【有啥问啥】 深入探索低比特量化:FP4 训练与推理技术的现状及展望

FP4

深入探索低比特量化:FP4 训练与推理技术的现状及展望

前言

近年来,深度学习模型,特别是大型语言模型(LLM)的规模呈现爆炸式增长。动辄数十亿甚至上万亿参数的模型在带来强大能力的同时,也给计算资源带来了巨大的挑战:显存占用高、计算量大、能耗惊人。为了应对这些挑战,模型量化技术应运而生,旨在通过降低模型参数和计算过程中的数值精度,来压缩模型大小、减少内存带宽需求、加速计算并降低功耗。

在众多量化技术中,从 32 位浮点(FP32)到 16 位浮点(FP16/BF16),再到 8 位整数(INT8)和 8 位浮点(FP8),研究人员不断探索着精度与效率的最佳平衡点。而现在,一个更为激进的量化前沿——4 位浮点(FP4)——正逐渐进入人们的视野。本文将全面梳理低比特量化技术,特别是 FP4 在训练和推理方面的现状、挑战与未来展望,并首先解释 INT8、INT4、FP8 等关键概念,以便读者更好地理解 FP4 的背景和意义。

一、量化基石:理解 INT8、INT4 与 FP8

在深入 FP4 之前,我们先快速回顾一下当前较为常见的低比特量化格式:

  1. INT8 (8 位整数)

    • 是什么: 使用 8 个比特来表示整数。通常有一个符号位,剩下的 7 位表示数值。为了表示原始 FP32 的数值范围,通常需要配合一个缩放因子(Scale Factor)和一个零点(Zero Point)。其公式可以简化为:FP32_value ≈ Scale * (INT8_value - Zero_Point)
    • 优点:
      • 计算高效: 整数运算在大多数硬件(CPU、GPU、TPU、NPU)上都非常快,且能耗较低。
      • 硬件支持广泛: 许多现有硬件都对 INT8 运算提供了原生加速支持。
      • 压缩效果显著: 模型大小压缩约 4 倍(相比 FP32)。
    • 缺点:
      • 动态范围有限: 难以精确表示数值范围非常大或非常小的浮点数。
      • 精度损失: 量化过程是有损的,可能导致模型精度下降,尤其是在量化敏感的模型或任务上。需要精心的校准(Calibration)或量化感知训练(Quantization-Aware Training, QAT)来弥补。
    • 应用: 主要用于模型推理加速,尤其是在资源受限的边缘设备和追求高吞吐量的云端推理场景。
  2. INT4 (4 位整数)

    • 是什么: 使用 4 个比特表示整数,通常也需要配合缩放因子和零点。
    • 优点:
      • 极致压缩: 模型大小压缩约 8 倍(相比 FP32)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有啥问啥

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值