51、计算机视觉中的点云处理、结构运动估计及图像应用

计算机视觉中的点云处理、结构运动估计及图像应用

1. ICP算法及其鲁棒性

ICP(Iterative Closest Point)算法是一种流行的点云配准算法,具有快速且鲁棒的特点。以下是使用ICP算法的示例代码:

% 返回位姿 ξ
>> trprint(T, ’rpy’, ’radian’)
t=(1 2 3),R=(0.2 0.3 0.4) rad

这里得到的位姿正是我们之前选择的第二个点云的未知相对位姿。残差是变换后的模型点与数据之间误差的均方根:

>> d
d =
   6.8437e-08

为了展示ICP算法的鲁棒性,我们模拟一些现实中的传感器误差:
1. 随机从数据中移除20个点:

>> D(:,randi(100, 20,1)) = [];
  1. 添加10个不属于模型的虚假点:
>> D = [D rand(3,10)];
  1. 向数据中添加标准差为0.05的高斯噪声:
>> D = D + randn(size(D)) * 0.05;

然后使用额外的选项来消除不正确的最近点对应关系,将损坏的数据与模型进行拟合:

>> [T,d] = icp(M, D, ’plot’, ’distthresh’, 1.5);

此时估计的位姿 ξ 为:

>> trprint(T, ’rpy’, ’radian’)
t = (1.02161,1.98456,2.98566), R = (0.164436,0.299455,0.418697) rad

虽然仍然接近理想情况下计算的值,但残差更高:

>> d
d =
    0.6780

这是因为模型与受噪声损坏的数据之间无法实现精确拟合。不过,ICP算法对于中等规模的点云是快速且鲁棒的,但对应关系的确定是一个 $O(N^2)$ 的问题,对于非常大的数据集会导致计算瓶颈。

2. 结构与运动估计

在稀疏立体视觉示例中,我们从对应的图像点估计相机的运动和姿态变化,进而估计世界中某些点的三维位置,即场景的结构。以下是一个使用单移动相机的图像序列进行实时估计的示例:
1. 创建中心透视相机和位于立方体顶点和面中心的点:

>> camera = CentralCamera('name', 'sfm', 'default');
>> cube = mkcube(0.6, 'facepoint')
  1. 相机在xy平面上以半径为3m的圆围绕立方体移动,同时始终面向原点:
>> nsteps = 50;
>> theta = tpoly(0, 2*pi, nsteps);
>> T = [];
>> for th=theta'
>>    T = cat(3, T, trotz(-th) * transl(0, -3, 0) * trotx(-pi/2) );
>> end
  1. 进行图像平面投影:
>> p = camera.plot(cube, 'Tcam', T);

在路径的每一步,我们执行以下算法,以第20步为例:

>> k = 20;
  1. 使用当前图像和前一图像之间的对应点估计基本矩阵:
>> F = fmatrix( p(:,:,k-1), p(:,:,k) );
  1. 将基本矩阵升级为本质矩阵:
>> E = camera.E(F);
  1. 分解本质矩阵以估计从最后一个相机位姿到当前位姿的运动:
>> relpose = camera.invE(E, [0 0 10]');

然而,估计的位姿的平移部分存在未知比例因子问题。为了解决这个问题,我们可以采用以下方法:
- 使用其他传感器(如里程计或GPS)提供平移运动的幅度估计。
- 使用立体相机直接提供深度信息,然后使用ICP算法确定当前和前一时间步的3D点云的相对位姿。
- 利用已知一个观察到的世界点的地面高度信息。

以下是利用已知点高度信息的示例:

>> j = 1;
>> P(:,j)'
ans =
   -0.3000   -0.3000   -0.3000
>> Yj = 0.3;

通过一系列计算,我们可以恢复缺失的比例因子,并估计相机在世界坐标系中的位姿。但这种方法存在误差累积的问题,添加噪声后,比例估计的准确性会降低,相机位置估计会偏离真实位置。

为了估计场景的结构,我们可以使用稀疏立体方法:

>> r1 = camera.ray(p(:,:,k-1))
>> r2 = camera.move(dT).ray(p(:,:,k))
>> x = r1.intersect(r2)
>> xc = homtrans(inv(T_est(:,:,k-1), x))

这种方法简单但存在一些缺点,如每个时间步都要估计每个世界点的三维坐标,且估计质量强烈依赖于相机和世界点之间的相对运动。为了改善这些问题,我们可以采取以下措施:
- 增加有效基线,例如在每N帧之间进行三角测量。
- 应用低通滤波器,如移动平均滤波器、卡尔曼滤波器或α - β跟踪滤波器。
- 使用扩展卡尔曼滤波器,该滤波器的状态包括相机的位姿和地标点的世界坐标,通过测量值的更新来提高世界点位置的估计精度。

3. 应用:透视校正

透视校正可以将因相机光轴不垂直于建筑物平面而产生透视缩短或梯形失真的图像校正为正面平行视图。以下是具体操作步骤:
1. 读取图像并显示:

>> im = iread('notre-dame.jpg', 'double');
>> idisp(im)
  1. 手动选择建筑物平面上大矩形的四个角点:
>> p1 = ginput(4)'
  1. 用半透明蓝色填充这些点并覆盖在图像上:
>> plot_poly(p1, 'wo', 'fill', 'b', 'alpha', 0.2);
  1. 使用这些点的极值定义图像中矩形的顶点:
>> mn = min(p1');
>> mx = max(p1');
>> p2 = [mn(1) mx(2); mn(1) mn(2); mx(1) mn(2); mx(1) mx(2)]';
  1. 用红色填充并覆盖在图像上:
>> plot_poly(p2, 'k', 'fill',  'r', 'alpha', 0.2)
  1. 计算将蓝色梯形顶点转换为红色矩形顶点的单应性矩阵:
>> H = homography(p1, p2)
  1. 应用单应性矩阵对输出图像的每个像素坐标进行变形,以扭曲输入图像:
>> homwarp(H, im, 'full')

此外,我们还可以分解单应性矩阵以恢复相机从实际到虚拟视点的运动以及大教堂的表面法线。具体步骤如下:
1. 从EXIF格式文件的头部获取焦距:

>> [im,tags] = iread('notre-dame.jpg', 'double');
>> tags.DigitalCamera
  1. 创建校准相机:
>> cam = CentralCamera('image', im, 'focal', 7.4e-3, ...
    'sensor', [7.18e-3,5.32e-3])
  1. 使用相机模型计算并分解欧几里得单应性矩阵:
>> sol = cam.invH(H, 'verbose');

通过分析解的结果,我们可以确定相机的运动和大教堂表面的法线。

4. 应用:图像拼接

图像拼接是将多个重叠图像创建为大规模复合图像的过程,常用于航空、卫星图像以及水下机器人拍摄的海底图像等。以下是一个具体的图像拼接示例:
1. 读取两个重叠的图像:

>> im1 = iread('mosaic/aerial2-1.png', 'double', 'grey');
>> im2 = iread('mosaic/aerial2-2.png', 'double', 'grey');
  1. 创建一个空的复合图像:
>> composite = zeros(2000,2000);
  1. 将第一个图像粘贴到复合图像的左上角:
>> composite = ipaste(composite, im1, [1 1]);
  1. 识别两个图像中的共同特征点(即连接点):
>> surf = isurf(im1)
>> surf = isurf(im2)
>> m = surf.match(surf);
  1. 使用RANSAC算法估计单应性矩阵:
>> [H,in] = m.ransac(@homography, 0.2)
  1. 对第二个图像进行变形,将其映射到第一个图像的对应坐标:
>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', 0);
  1. 将变形后的图像(瓷砖)融合到复合图像中:
>> canvas = ipaste(canvas, tile, t, 'add');

由于简单相加会导致重叠像素变亮,我们可以采用以下策略进行改进:
- 仅在复合图像像素尚未设置时,从瓷砖中设置像素。
- 始终从瓷砖的非零像素设置复合图像像素。
- 将复合图像像素设置为瓷砖和复合图像像素的平均值。具体操作如下:

>> [tile,t] = homwarp(inv(H), im2, 'full', 'extrapval', NaN);
>> canvas = ipaste(canvas, tile, t, 'mean');

流程图

graph TD;
    A[开始] --> B[ICP算法处理];
    B --> C[结构与运动估计];
    C --> D[透视校正];
    D --> E[图像拼接];
    E --> F[结束];

表格总结

应用场景 关键步骤 代码示例
ICP算法 模拟误差、拟合数据 D(:,randi(100, 20,1)) = [];
结构与运动估计 创建相机、估计位姿、解决比例因子问题 camera = CentralCamera('name', 'sfm', 'default');
透视校正 选择点、计算单应性矩阵、变形图像 p1 = ginput(4)'; H = homography(p1, p2);
图像拼接 读取图像、识别特征点、融合图像 im1 = iread('mosaic/aerial2-1.png', 'double', 'grey');

计算机视觉中的点云处理、结构运动估计及图像应用(续)

5. 各应用的深入分析与对比

在前面我们介绍了计算机视觉中几个重要的应用,包括ICP算法、结构与运动估计、透视校正和图像拼接。下面我们对这些应用进行更深入的分析和对比。

5.1 计算复杂度
  • ICP算法 :对应关系的确定是一个 $O(N^2)$ 的问题,对于大规模点云数据,计算量会显著增加,导致计算瓶颈。例如,当点云数据量非常大时,算法的运行时间会大幅增长。
  • 结构与运动估计 :在每一步都需要进行基本矩阵和本质矩阵的计算,以及射线相交等操作。虽然每次计算的复杂度相对可控,但由于需要在多个时间步进行重复计算,整体计算量也不容小觑。特别是在使用扩展卡尔曼滤波器时,需要维护和更新状态向量,计算复杂度会进一步提高。
  • 透视校正 :主要的计算在于单应性矩阵的计算和图像的变形操作。单应性矩阵的计算相对简单,复杂度较低。图像变形操作需要对每个像素进行处理,但由于通常图像的分辨率是固定的,计算复杂度相对稳定。
  • 图像拼接 :关键步骤包括特征点识别、单应性矩阵估计和图像融合。特征点识别和单应性矩阵估计的复杂度与图像的特征数量和质量有关。图像融合操作相对简单,复杂度较低。
5.2 鲁棒性
  • ICP算法 :通过模拟现实中的传感器误差,如随机移除点、添加虚假点和噪声,我们发现ICP算法仍然能够得到接近理想情况的位姿估计,具有较强的鲁棒性。但对于严重损坏的数据,残差会明显增加,说明其鲁棒性也有一定的局限性。
  • 结构与运动估计 :在存在噪声的情况下,比例因子的估计会受到影响,导致相机位置估计偏离真实位置,鲁棒性较差。不过,通过使用扩展卡尔曼滤波器等方法,可以在一定程度上提高鲁棒性。
  • 透视校正 :手动选择特征点的方式可能会引入误差,特别是在图像质量较差或特征不明显的情况下。但一旦单应性矩阵计算准确,透视校正的效果通常比较稳定,鲁棒性较好。
  • 图像拼接 :特征点的识别和匹配是关键,如果图像之间的重叠区域较小或特征不明显,可能会导致单应性矩阵估计不准确,影响拼接效果。通过使用RANSAC算法可以提高鲁棒性,但仍然存在一定的误匹配风险。
5.3 应用场景
  • ICP算法 :适用于点云配准任务,如机器人地图构建、三维重建等。在这些场景中,需要将不同视角或时间采集的点云数据进行对齐。
  • 结构与运动估计 :常用于相机运动估计和场景结构恢复,如无人机导航、虚拟现实等。通过估计相机的位姿和场景的结构,可以实现更精确的定位和建模。
  • 透视校正 :主要应用于图像校正,如建筑摄影、文档扫描等。可以将因透视变形的图像校正为正面平行视图,提高图像的视觉效果。
  • 图像拼接 :广泛应用于创建大规模的复合图像,如航空摄影、全景图生成等。可以将多个重叠的图像拼接成一个连续的、无缝的图像。
6. 实际应用中的注意事项

在实际应用上述算法和技术时,需要注意以下几点:

6.1 数据预处理
  • 点云数据 :在使用ICP算法之前,需要对点云数据进行预处理,如去除噪声、降采样等,以减少计算量和提高算法的鲁棒性。
  • 图像数据 :对于图像拼接和透视校正,需要对图像进行灰度化、滤波等预处理操作,以提高特征点的识别和匹配效果。
6.2 特征点选择
  • 手动选择 :在透视校正中,手动选择特征点需要确保选择的点准确无误,并且能够代表图像的关键特征。
  • 自动识别 :在图像拼接和结构与运动估计中,自动识别特征点时需要选择合适的特征提取算法,如SURF、SIFT等,并进行特征匹配和筛选,以减少误匹配。
6.3 参数调整
  • ICP算法 :需要调整距离阈值等参数,以消除不正确的最近点对应关系,提高配准精度。
  • RANSAC算法 :在图像拼接中,需要调整RANSAC算法的误差阈值等参数,以提高单应性矩阵的估计精度。
6.4 误差处理
  • 累积误差 :在结构与运动估计中,由于误差的累积,可能会导致相机位置估计偏离真实位置。需要采用合适的方法进行误差补偿,如扩展卡尔曼滤波器。
  • 噪声影响 :在所有应用中,噪声都会对算法的性能产生影响。需要采用滤波等方法去除噪声,提高数据的质量。
7. 未来发展趋势

随着计算机视觉技术的不断发展,上述应用也将不断改进和完善。以下是一些未来的发展趋势:

7.1 深度学习的应用
  • 特征提取 :深度学习可以自动学习图像和点云数据中的特征,提高特征提取的准确性和鲁棒性。例如,使用卷积神经网络(CNN)进行图像特征提取。
  • 模型训练 :可以使用深度学习模型对ICP算法、结构与运动估计等进行训练,提高算法的性能和适应性。
7.2 实时处理能力的提升
  • 硬件加速 :随着GPU等硬件技术的不断发展,可以利用硬件加速来提高算法的实时处理能力。例如,使用CUDA编程实现ICP算法的并行计算。
  • 算法优化 :对现有算法进行优化,减少计算复杂度,提高实时性。例如,采用增量式ICP算法减少重复计算。
7.3 多传感器融合
  • 数据融合 :将相机、激光雷达等多种传感器的数据进行融合,提高数据的准确性和完整性。例如,在机器人导航中,结合相机和激光雷达的数据进行定位和建图。
  • 算法融合 :将不同的算法进行融合,发挥各自的优势。例如,将ICP算法和深度学习算法相结合,提高点云配准的精度。

流程图

graph TD;
    A[数据预处理] --> B[特征点选择];
    B --> C[参数调整];
    C --> D[算法应用];
    D --> E[误差处理];
    E --> F[结果输出];
    G[未来发展趋势] --> H[深度学习应用];
    G --> I[实时处理提升];
    G --> J[多传感器融合];

表格总结

方面 详细内容
计算复杂度 ICP算法 $O(N^2)$ ,结构与运动估计多步计算,透视校正稳定,图像拼接与特征数量有关
鲁棒性 ICP较强有局限,结构与运动估计较差可改进,透视校正较好,图像拼接有误匹配风险
应用场景 ICP用于点云配准,结构与运动估计用于相机运动和场景恢复,透视校正用于图像校正,图像拼接用于创建复合图像
注意事项 数据预处理、特征点选择、参数调整、误差处理
未来趋势 深度学习应用、实时处理能力提升、多传感器融合
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值