GPT论文阅读:Improving Language Understanding by Generative Pre-Training

GPT系列第一篇论文:Improving Language Understanding by Generative Pre-Training

abstract

在未标记文本语料库上对语言模型进行生成式预训练,然后对每个特定任务进行区分性微调。

method

训练过程包括两个阶段。第一阶段是在大型文本语料库上进行自监督训练。第二阶段在带标签数据进行微调。

模型的整体架构

无监督的预训练

给定一系列无监督tokens,最大化下列损失:

其中,k为上下文窗口的大小

使用了multi-layer Transformer decoder:

有监督的微调

通过transformer提取得到特折,然后再连接一个全连接层得到输出结果

微调的最终的损失函数:

experiment

模型架构

12层 decoder-only transformer,具有masked自注意头(768 dimensional states and 12 attention heads

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值