数据降维 理论

数据间的相关性
这里写图片描述

降维方法
这里写图片描述

PCA主成分分析
这里写图片描述
这里写图片描述

内积与投影
这里写图片描述

基向量
这里写图片描述
这里写图片描述

求向量在新基下的坐标
这里写图片描述

投影的矩阵表示
这里写图片描述

投影的矩阵表示
这里写图片描述

如何选择r个基向量?
这里写图片描述

分散程度度量:方差
这里写图片描述

协方差
这里写图片描述

协方差矩阵
这里写图片描述
这里写图片描述

基变换后的数据Y
这里写图片描述

优化目标:协方差矩阵对角化
这里写图片描述

对称矩阵(协方差矩阵)对角化
这里写图片描述
这里写图片描述

降维结果:低维空间投影
这里写图片描述

PCA思想
这里写图片描述

PCA流程
这里写图片描述

PCA实例
这里写图片描述
这里写图片描述
这里写图片描述

PCA对简单二维数据降维
这里写图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值