NURBS曲线与曲面

本文介绍了NURBS曲线与曲面的基础知识,适合初学者理解。内容包括NURBS的定义、应用场景以及如何使用。同时,作者推荐了一篇由其老师撰写的人工智能教程,教程适合零基础学习者,旨在普及知识,助力技术发展。
摘要由CSDN通过智能技术生成

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               
B样条方法在表示与设计自由型曲线曲面形状时显示了强大的威力,然而
在表示与设计初等曲线曲面时时却遇到了麻烦。因为B样条曲线包括其特例的
Bezier曲线都不能精确表示出抛物线外的二次曲线,B样条曲面包括其特例的
Bezier曲面都不能精确表示出抛物面外的二次曲面,而只能给出近似表示。
提出NURBS方法,即非均匀有理B样条方法主要是为了找到与描述自由型曲线
曲面的B样条方法既相统一、又能精确表示二次曲线弧与二次曲面的数学方法。
NURBS方法的主要优点:     
   
  (1)既为标准解析形状(即前面提到的初等曲线曲面),又为自由型曲线
曲面的精确表示与设计提供了一个公共的数学形式。 
   
  (2)修改控制顶点和权因子,为各种形状设计提供了充分的灵活性。
   
  (3)具有明显的几何解释和强有力的几何配套技术(包括节点插入、细
分、升阶等)。 
   
  (4)对几何变换和投影变换具有不变性。
   
  (5)非有理B样条、有理与非有理Bezier方法是其特例。
   
  不过,目前应用NURBS中还有一些难以解决的问题:
   
  (1)比传统的曲线曲面定义方法需要更多的存储空间,如空间圆需7个参
数(圆心、半径、法矢),而NURBS定义空间圆需38个参数。 
   
  (2)权因子选择不当会引起畸变。
   
  (3)对搭接、重叠形状的处理很麻烦。
   
  (4)反求曲线曲面上点的参数值的算法,存在数值不稳定问题。
 
 3.4.1 NURBS曲线的定义  
 
  NURBS曲线是由分段有理B样条多项式基函数定义的:

 

   
  其中,Ri,k(t)(i=0,1,…,n)称为k阶有理基函数,Ni,k(t)是k 阶B样条
基函数,Pi(i=0,1,…,n)是特征多边形控制顶点位置矢量;w i是与Pi对应
 的权因子,首末权因子w 0,w n>0,其余w i3 0,以防止分母为零及保留凸包
性质、曲线不因权因子而退化为一点;节点矢量为T=[t0, t1, … , ti, …,
点tn+k],节个数是m=n+k+1(n为控制项的点数,k为B样条基函数的阶数)。   
   
  对于非周期NURBS曲线,常取两端节点的重复度为k,即
   
  有:,在大多数实际应用中,a =0,
b =1。P(t)在区间上是一个k-1次有理多项式,P(t)在整条曲线上
具有k-2阶连续性,对于三次B样条基函数,具有C2连续性。当n=k-1时,k阶
NURBS曲线变成k-1次有理Bezier曲线,k阶NURBS曲线的节点矢量中两端节点的
成节点重复度取k+1就使得曲线具有同次有理Bezier曲线的端点几何性质。    
   
  Ri,k(t)具有k阶B样条基函数类似的性质:
   
  (1)局部支承性:Ri,k(t)=0,t? [ti, ti+k];
   
  (2)权性:
   
  (3)可微性:如果分母不为零,在节点区间内是无限次连续可微的,在
节点处 (k-1-r)次连续可导,r是该节点的重复度。 
   
  (4)若w i=0,则Ri,k(t)=0;
   
  (5)若w i=+¥ ,则Ri,k(t)=1;
   
  (6)若w j=+¥ ,且j1 i,则Ri,k(t)=0;
   
  (7)若w j=1,j=0,1,…,n, 则是B样条基函数;若w
jj=1,=0,1,…,n,且,Bi,k(t)是
Bernstein基函数。  
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值