Automatic control principle frequency analysis Part A

先从一个题目入手:
1.电路里也有类似的题目
即是用s先算后反变换,还是用s=jw代入传递函数。前者是求全部解,即暂态解和稳态解,后者是只求稳态解。
在自动控制原理的这道题里,它给出了单位反馈系统的开环传递函数G(S),然后求该系统在输入信号r=sin5t的作用下的稳态误差?
首先稳态误差,这里可能想到的是阶梯形的那个框框(即Kp,Kv,的那个系统型别和输入的稳态误差的那个)
但是那个的输入是冲击,阶跃,斜坡,不适用这里的情况。还可能想到的是误差传递函数,其实那个框框应该是用误差传递函数推导得来的结论。所以这里果断用误差传递函数。公式要会推导。可以用一般的传递函数的公式推导,好像还有更普遍的用梅森增益公式推导,懒得记。
然后利用频率特性,即幅值相乘,角度相加。
将s=j5代入误差传递函数,写成幅角的形式。然后结果就是其与输入的相乘。即幅值相乘,角度相加。
![6666666666666](https://img-blog在这里插入图片描述
这道题的启示是对于周期信号,一般是正弦信号,因为其他的周期信号都可以分解为正弦信号的叠加。
涉及稳态的都用这种方法。其实它的这里的幅值相乘,角度相加,我觉得就是电路中的相量法啊。恩恩,应该是的。
要把知识联系起来学习。因为邱官员的电路那里也是用了很多式子证明可以用相量法来进行正弦信号的处理。胡瘦松这里也用了一页的样子。

接下来进入新的知识的环节:我学完这章发现本章就是研究对开环传递函数的图像表示
主要有两大类:幅相频率曲线,又叫Nyquist图,听说有极坐标形式,可是没见过,书上都是直角坐标形式。即实轴为G(jw)的实部,虚轴为其虚部。
还有就是闻风丧胆的伯德图了,我不敢说我很懂,就是因为它的非线性刻度问题。
伯德图是有两种图,分别叫对数幅频和对数相频。前者的纵坐标是20lgA,A是G(jw)的幅值,后者的纵坐标是G(jw)的角度。
我现在对角度还是不够懂。
既然说到了就整理一下说说:
我们之前学的都是线性刻度,即坐标轴上的单位刻度表示的变化的量是相同的,所以有限的纸上只能标示有限的变量范围
试想,如果要表示从20HZ到20MHZ的频率范围,那坐标轴的刻度还能是均匀的吗,显然不能,差着一百万倍呢。
所以要用非线性刻度。我们知道指数函数的增长在常见函数里是最快的,所以就用指数的反函数对数函数来solve
这里容易弄错一个东西:
就是实际上是给你一个数轴,你选定一个点a0作为20HZ的对应频率点,那么之后的频率都是按照a0点来确定的。
你可以通过想象之前的线性刻度是如何弄出来的。先选取一点,一般取零,然后每单位长度横坐标值增减一。
这里的对数刻度不是,是从a0点开始,然后每单位长度变化,横坐标值变化十倍,比如a0右边单位长度对应的点的频率是10a0,10a0右边的点是100ao,以此类推。
我上面说容易弄错的东西是:在伯德图中,图像的样子不是w的刻度决定的,而是由单位长度决定的。比如y=20lgw,那么y(w)的图像就是直线。这点很关键,是理解伯德图的关键。
所以算直线斜率时的分母不是W2-W1,而是lgw2-lgw1。
趁热打铁:ling’pin’lü
我还是要说明:零频率点坐标轴上没有。也不要它,因为零频率的话就是直流了(这让我想到电路里有道题是把直流看出频率为零的周期信号)就用时域分析法了。
其实我还可以证明零频率在坐标轴上找不到。
比如在坐标轴上取一点频率为1HZ,则频率0.1HZ在它左边单位长度处,则0.01HZ在其左边两个单位长度处,以此类推
0.000000000000000000000000000000000000001,在其左边。。。。处,所以零在无穷远处。
之后在画伯德图的时候会用到w为零的点,处理方法就是在纵轴左方任意取一点认为是零频率点,好像还得是虚线,因为虚线表示无穷,实线表示有限频率的。这样才不会混淆。
零频率讲完了
接着讲上面的趁热打铁画伯德图
我之前画图的习惯是找斜率和交于纵轴的点,其实这样不具有普遍性。画直线的普遍性是只需知道斜率和直线上一点即可。
所以当w=1时,lgw=0,对于y=20lgw来说就是过(1,0)点。斜率为20.注意这里的y=20lgw只是一个例子s,不要当成普遍性,更具体点的知识还没讲到。
这里插播一条信息,来自石群老师:他说lgw是分度,那w就应该是刻度。
有的题目会改成分度为lg(w/3),或者坐标轴改为w/3,这时就是看你到底懂不懂了。

下面进行Nyquist的讲解:
在这里插入图片描述
在这里插入图片描述
注意区分Nyquist和博得图,前者的横坐标是G(jw)的实部,不是w,要想体现w的变化采用的是图形的起点对应w=0,终点是w=∞。
如下图:
在这里插入图片描述
对应惯性环节(这里还得是标准形式,自动控制原理这里的标准形式很重要,因为数学很严谨)1/TS+1,
不论T是多少,它对应的Nyquist图像都是这种半圆。可以通过数学证明。
更特殊的,如果系数是k,那么圆心就是(k/2,0),半径是k/2.
证法有两种,依据结论来证,这个就是没什么水平了
还有就是考察数学基本功了,把x,y的表达式消去中间变量只剩下x和y。我的数学基础是真彩。

下面开始讲典型环节的频率特性,之所以要研究这些,因为复杂的就是由简单的构成的。
在这里插入图片描述
这里要注意典型环节的标准形式是常数项的系数为正1
在正1的基础上再由s的系数的正负来判断是最小相位与否。
上面总共是13个,记忆如下:
比例,一阶微分,惯性,二阶微分,振荡。这五个最小非最小都有。
积分和纯微分只有最小相位有,而延迟环节是非最小相位有。

下面对这些环节进行分析。
1.比例环节
在这里插入图片描述
2.积分环节

在这里插入图片描述

3.惯性环节
在这里插入图片描述
惯性环节的Nyquist之前讲过了,这里主要讲其伯德图。
而且还是近似的伯德图形式
上面的“这在对数坐标系内是一个曲线方程”说明实际是曲线,曲线不好画。一般就是贴着折线的曲线就是它了。
在这里插入图片描述
在这里插入图片描述
arctanx本身确实是有奇对称,但是不知道怎么证明。
而且这里是0到90°的范围,跟arctanx不一样,真的不知道怎么证明的。。。。。。。。
学名叫对数相频曲线关于转折频率点奇对称。我试着用1/T两边取点1/T+deta,1/T-deta,发现证不出来。
因为按结论来说两者的arctan值之和应为90,那么tan90为无穷,可是实际算出来结果是带deta的。

而且还可以举反例证明:
比如令T=1,则arctanx在0到无穷之间,是单调递增的(求导即可),而不是关于某点奇对称,因为奇对称的话斜率就不是单调的了。所以目前我认为那个结论是错的。

既然都说到了arctanx
首先图形要会画(定义域,值域,对称性)
然后根据图形可以得出
1.arctanx+arctan(1/x)=90°(结合三角形的两条直角边记忆)
2.arctanx+arctan(-x)=0
注意:研究arctanx是要转换到-90°到90°范围内来算。即相量在一四象限。因为那是函数本身的值域。
见下图。

4.振荡环节
在这里插入图片描述
相频特性中的180就是用来转换到值域范围用的。技巧:可以通过代数式的形式判断角度的所属象限,我们要的是一四象限,第三种情况是属于第二象限,所以用角度关系转换到第一象限。(就是实部相反,虚部相同,不就互补180嘛)
上面是振荡环节的相频特性,下面讲它的幅频特性
在这里插入图片描述
这里我在看幅频的时候发现振荡环节为什么要这么写?
记住就行了
既然是环节,就不分是开环还是闭环,因为只是一个环节而已。
然后结论是:
当阻尼比在()内,有极大值
当在之外时,单调递减,当然就没有极值。用图像来记忆
在这里插入图片描述
上面是伯德图,A有极值对应20lgA亦有极值,因为lgx单调嘛。所以由对数幅频很容易看出所示规律。
至于对数相频,还是画成奇对称的样子。是为了好看吗?
在这里插入图片描述

再来看看Nyquist
在这里插入图片描述
不好看出极值的情况,但是差不多吧
可以看出角度的变化范围0到-180°
可以看出与虚轴的交点,其实是算出来的(0,1/2阻尼比),对应的w是w=wn,因为此时是角度为-90度。
可以看出阻尼比越大,图形越紧凑。

我们看了积分,惯性,振荡环节,有了这三个,其他的环节都可以通过他们三画出
这是有依据的。详情如下:
1.非最小相位环节和对应的最小相位环节
A相同,L=20lgA相同,但角度相反
A用于幅相曲线即nyquist,L用于伯德图,L来自A
而角度是两者都要
2.传递函数互为倒数的典型环节
A为倒数,L值相反,角度亦相反
在这里插入图片描述
在这里插入图片描述
学到这里典型环节的基本结束了,还有个延迟环节,在讲它之前,先讲讲非最小相位易误的点
就是之前提过的要写成标准形式的问题。见下图
在这里插入图片描述
就是常数项必须是正一,这才是标准形式。

再讲延迟环节:
在这里插入图片描述
延迟环节本身用s=jw替换后就是相量的形式,
它的作用是与其他环节在一起,
具体怎么用没见到
反正就是幅值不变,角度减小,而且w越大角度减小的越厉害,所以会形成螺旋线(在原点处)

开始进行图形的研究了,基本的素材已经准备完毕
let‘s start/…

首先要明确我们这里是先谈开环频率特性,之后会转换到闭环。
在这里插入图片描述
对于起点和终点而言,它俩的幅值和角度都得求
对于幅值,代入s=0和无穷即可,
而对于角度,要用到前面典型环节的角度的组合。

比如上图中的起点的角度看积分环节,因为其他环节在s=0处的相角值都是零
在这里插入图片描述

在这里插入图片描述
起点和终点以及与负实轴的交点都求,这是规范步骤。至于象限问题,还不是很懂。
在这里插入图片描述

在这里插入图片描述
这里的无阻尼振荡环节导致出现了相角的突变
从相频的表达式中可以看出w=wn处
取左极限时是大于零的,右极限时是小于零的。
而角度对正负的变化是很敏感的。
图中的红色字体说明了角度是怎么来的
就是复数以外的东西是系数,一旦正负确定,角度就只用看复数部分,如上图的Tw+j
再利用互为倒数的arctanx的关系即可得到该式(前面的arctanx的性质)
至于下面一个式子就是正负号变化了一次,至于为什么是-180,我觉得+180不也行嘛??
所以说这里要记得无阻尼振荡环节会发生相角的突变
更一般的结论是当这种振荡环节的重数为L时,则相角就会在wn处突变-L*180.

大致Nyquist的图像就先讲到这,下面讲伯德图。
在这里插入图片描述
L(W):标,低,改,修
角度(w):算出5个点。

背景知识:
1.这里是频率分析,所以要用频率法的形式看传递函数,即尾一的形式。
2.伯德图中的折线图是近似图,所以在各个转折频率处激活的环节不同
所谓激活就是没到某个环节的转折频率之前,该环节相当于没有,就按照对应的斜率变化改变斜率
依据以上两点,所以低频段的斜率由积分环节决定,但是还得确定过一点才可以画出直线,一般选(1,20lgk)
因为低频段取决于k/w^v,斜率为-20vdB/Dec,过(1,20lgk)。

在这里插入图片描述
在这里插入图片描述
就是在转折频率中把实际值算出来然后在平滑连接就是修正?看着像是的。
对于二阶的话wr的公式要记住,因为阻尼比在那个范围内是要用到wr的。其他的情况不论是一阶还是二阶,都只要代入转折频率即可。

下面是将对数相频,就是前面说的五个点
在这里插入图片描述
我刚看看发现有疑惑,有180度,那不应该突变吗,但是看表格中的角度,明显没有突变。
问题出在**,看突变与否不是看有没有180°,而是看有没有无阻尼振荡环节。**
这里的180度就是一般振荡环节的角度表示。
在这里插入图片描述
在这里插入图片描述
画图的技巧:
坐标轴的刻度很关键,我感觉1肯定要标出来
还有虚线,左疏右密,
然后斜率要标在旁边,中括号的形式。
这里有个东西注意:比如w=0.5时的纵坐标要不要算出来,我觉得不用,因为斜率确定好且横轴的刻度也确定好,该点自然也就确定了,本来就是近似的图。
所以说横轴的刻度是关键

在这里插入图片描述
Nyquist也得会,起点,终点,交点,总感觉象限有点多余。可能是题目见的少吧

在这里插入图片描述
在这里插入图片描述
为什么非得是最小相位系统。。。。。。。。。。。。。。。。。。。。。
非最小相位的话不就是T为负的问题嘛,我感觉还是可以像上面这么来啊。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值