(CV,Math)仿射几何

本文地址:http://blog.csdn.net/mounty_fsc/article/details/51492927

本文简单介绍了仿射变换,主要从仿射变换的矩阵表示方面理解。

1 仿射变换矩阵表示

以二维坐标为例讲述仿射变换。变换前坐标为(x,y),变换后坐标为(x,y)本文均使用齐次坐标系,齐次坐标见《射影变换》

二维仿射变换保持了图像的“平直性”(即变换后直线还是直线)和“平行性”(平行线还是平行线)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。其中平移与旋转为刚体变换,平移、旋转与缩放为相似变换

仿射变换用等式表示如下:

{x=ax+cy+txy=bx+dy+ty

用矩阵表示如下:

xy1=ad0cb0txty1xy1

1.1 平移Translation

(x,y)平移后坐标为(x+tx,y+ty),变换矩阵为

100010txty1

1.2 缩放Scale

(x,y)缩放后坐标为(ax,dy),变换矩阵为

sx000sy0001

1.3 翻转Flip

(x,y)翻转后坐标为(x,y)(x,y),变换矩阵为

100010001100010001

1.4 旋转Rotation

(x,y)旋转后坐标为(xcosθysinθ,ycosθ+xsinθ),变换矩阵为

cosθsinθ0sinθcosθ0001

x=rcosαy=rsinαx=rcos(α+θ)=rcosαcosθrsinαsinθ=xcosθysinθy=rsin(α+θ)=rsinαcosθ+rcosαsinθ=ycosθ+xsinθ

注,若围绕某点(x0,y0)旋转,则可以理解为坐标系平移(x0,y0)后再进行旋转,即对(xx0,yy0)旋转后得到(xx0,yy0)

1.5 剪切Shear

(x,y)剪切后坐标为(x+cy,y+bx),变换矩阵为

1shy0shx10001

也相当于水平剪切和垂直剪切的符合:
1shy0010001100shx10001

水平、垂直剪切如下图

1.6 刚体变换

由上可知,刚体变换包括平移和旋转,所以变换矩阵可以表示为,其中R为3*3的正交旋转矩阵

(R0Tt1)

1.7 总结

  1. 从以上可以看出,若某物质或信息具有仿射不变性,则也具备尺度不变性(Scale invariant)

2 仿射几何

这部分描述的仿射几何的一些重要的数学概念。

2.1 平行射影

又称透视仿射,是射影几何的概念,由此可知仿射变换是射影变换的一种特例。

平面到平面的仿射是有限回平行射影的积组成的。比如,由连续施行平面ππ1π1π2π2π3,再从π3回到π的共四次平行投影得到的平面π上点之间的对应,例如ABC的对应点为A'B'C',这个对应就是平面π上的一个仿射变换。

2.2 简比

  • 定义ACBC为三共线点ABC的简比
  • 简比在仿射变换下是不变的,即ACBC=ACBC
  • 简比是仿射变换最基本的不变量

参考资源:
1. http://blog.csdn.net/kesalin/article/details/577973
2. http://liuyanwei.jumppo.com/2015/11/24/iOS-affine-transfermation-animation.html?utm_source=tuicool&utm_medium=referral
3. http://www.th7.cn/Program/Android/201501/353476.shtml
4. http://www.360doc.com/content/14/0410/14/10724725_367760675.shtml

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值