CVPR 2024 | 平衡效率与质量,南航提出新风格迁移算法Puff-Net

关注公众号,发现CV技术之美

分享一篇CVPR 2024 图像风格迁移领域的一篇文章《Puff-Net: Efficient Style Transfer with Pure Content and Style Feature Fusion Network》,作者团队来自南航。

4d490a41af18b4e9f731a1b9bac64431.png
Puff-Net论文作者
de6055aa4f9da5a0801f3749494476d5.png
与其他算法的比较,在性能和效率上有更好的平衡
4d2c12019747e370e00080b0cc5d5b86.png
Puff-Net风格迁移结果示例

一、技术背景

风格迁移(Style Transfer)技术的目标是将一张图片的艺术风格应用到另一张图片上,同时保持原图的结构完整。近年来,这项技术在计算机视觉领域取得了显著进展,被广泛应用于艺术创作、图像增强和虚拟现实等领域。

早期的风格迁移方法主要依赖卷积神经网络(CNN),通过提取内容图像和风格图像的特征来实现图像的风格化。然而,CNN方法在处理全局信息和长距离依赖关系时存在局限性。为了解决这些问题,研究人员提出了基于Transformer的方法,这些方法在建模内容和风格图像之间的关系方面表现更好,但它们通常需要高昂的硬件成本和耗时的推理过程。

二、现有技术的问题

尽管Transformer方法在风格迁移任务中表现优异,但它们面临以下挑战:

  • 计算成本高:传统的Transformer模型通常包括编码器和解码器,计算复杂度较高,导致推理速度慢。

  • 内容和风格失衡:现有的方法在实现图像风格化的同时,可能会导致内容缺失或风格应用不足。

  • 硬件要求高:这些方法通常需要高性能的硬件设备,限制了它们的广泛应用。

三、Puff-Net的技术架构和创新点

为了应对上述挑战,本文提出了一种新颖的风格迁移网络——Puff-Net。

efa24f326eae1538d6811cbe6cadd004.png
Puff-Net架构

Puff-Net的设计包括以下几个创新点:

  1. 纯内容和风格特征融合网络:

  • 内容特征提取器:设计一个内容特征提取器,从输入图像中提取纯内容特征,确保内容信息的完整性。

  • 风格特征提取器:设计一个风格特征提取器,从风格图像中提取纯风格特征,保证风格特征的充分表达。

  1. 简化的Transformer模型:

  • 仅包含编码器:为了降低计算成本,Puff-Net仅使用Transformer的编码器部分,大幅减少了计算复杂度和推理时间。

  1. 高效的特征融合机制:

  • 内容和风格特征融合:设计了一种高效的特征融合机制,将提取到的内容特征和风格特征进行有效融合,实现高质量的风格迁移。

四、实验结果

为了验证Puff-Net的有效性,研究团队进行了大量的实验,对比了现有的多种风格迁移方法。实验结果表明,Puff-Net在多个方面表现出色:

  1. 生成质量:Puff-Net生成的图像在保持内容完整性的同时,能够很好地应用风格特征,实现了高质量的风格迁移。

7c4cb1b3a3f96830c01a7ec2ba74cf93.png
视觉比较
bb8ca3ead4dbf299c522702cf14b5d13.png
量化结果比较
  1. 计算效率:由于采用了简化的Transformer架构,Puff-Net在主流算法中具有优势。

a80f41357a7a0570e94ffd89b829e34c.png
推断时间比较,使用Tesla P100

五、相关资源

  • 论文地址:https://arxiv.org/pdf/2405.19775

  • 代码仓库(尚未开源):https://github.com/ZszYmy9/Puff-Net

六、总结

Puff-Net通过创新的纯内容和风格特征融合网络设计,以及简化的Transformer编码器架构,在生成质量、计算效率和硬件要求方面的表现优异。使其在实际应用中具有广泛的潜力。

64ca698e8ed94877aceb4db5c0c5d5ba.jpeg

END

欢迎加入「图像迁移交流群👇备注:图像迁移

d904f1a6ce86d73e8a1722830c2144c6.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值