紧接着“Harris角点检测及代码分析”,这里主要分析OpenCV的cvGoodFeaturesToTrack()函数,这才是角点提取的真正代码。
Jianbo Shi, Carlo Tomasi. Good Features to Track. CVPR94
时间:2015-05-25 16:12
算法步骤
- cvCornerHarris()函数仅计算出每个像素单元的
R
值,然后再对
R 进行过滤,仅留下 ≥β×maxR 的像素点; - 非极大值抑制(Non-Maximum Suppression),我看到网上很多人直接Dilate-Image && Origin-Image,但这样会形成角点块,除非有下面的步骤;
- 对该阶段的角点 R 值进行降序排序;
- 距离滤波器,过滤点靠太近的点,留下
R 值高的角点。
代码分析
便于理解先看OpenCV1.0的cvGoodFeaturesToTrack()源码,已删除了与理解算法无关的代码。
void cvGoodFeaturesToTrack(...)
{
// 是否使用harris角点响应器
if(use_harris)
{
// harris角点响应值,det(M)-a*(trace(M))^2
cvCornerHarris(img, eig, block_size, 3, harris_k);
}
else
{
// 用最小特征值作为响应值
cvCornerMinEigenVal(img, eig, block_size, 3);
}
cvMinMaxLoc(eig, 0, &max_val, 0, 0, mask);
cvThreshold(eig, eig, max_val * 0.01, 0, CV_THRESH_TOZERO);
cvDilate(eig, tmp);
min_dist = cvRound(min_distance * min_distance);
// 检查原响应图与dilate图的每个像素,如果不为0且相等,则为候选角点
for(y = 1, k = 0; y < size.height - 1; y++)
{
for(x = 1; x < size.width - 1; x++)
{
if(eig_data[x] != 0 && eig_data[x] == tmp_data[x])
ptr_data[k++] = eig_data + x;
}
}
// 对候选角点按响应值降序排序
icvSortFeatures( ptr_data, k, 0 );
// 遍历所有候选角点,如果当前角点与前面所有角点的欧式距离小于min_dist,
// 则标记为真正角点
for(i = 0; i < k; i++)
{
for(j = 0; j < count; j++)
{
int dx = x - ptr[j].x;
int dy = y - ptr[j].y;
int dist = dx * dx + dy * dy;
if(dist < min_dist)
break;
}
if(j == count)
{
ptr[count].x = x;
ptr[count].y = y;
if(++count >= max_count)
break;
}
}
}
算法优化
OpenCV2.0以上版本在goodFeaturesToTrack()函数中对距离滤波器做了修改,应该是为了加速做的改进。具体方法为:
- 对整张图像划分网格,每个网格的大小为min_dist * min_dst,网格数量为grid_width * grid_height;
- 建立二维矩阵,grid(grid_width * grid_height),用来存放最终标记的角点;
- 进行距离滤波时,计算出候选角点所在网格,仅需检测网格8领域的角点与候选角点的距离,就能快速verify。
为了保证能计算出比较多的角点,一般min_dist设置得比较小,如果10,针对一张640 * 480的图像检测角点,应该能有不错的性能提升。