NumPy
Python三大利器之一
ZPILOTE
一名机器人和自动驾驶相关领域的从业者,努力记录自己的点滴经验。
展开
-
NumPy学习笔记21. IO
import numpy as npa = np.array([1,2,3,4,5])# 保存到outfile.npy文件上np.save('outfile.npy',a)# 保存到 outfile2.npy 文件上,如果文件路径末尾没有扩展名 .npy,该扩展名会被自动加上np.save('outfile2',a)import numpy as npb = np.load...原创 2019-10-31 19:30:22 · 249 阅读 · 0 评论 -
NumPy学习笔记20.线性代数
import numpy.matlibimport numpy as npa = np.array([[1,2],[3,4]])b = np.array([[11,12],[13,14]])print(np.dot(a,b))[[37 40] [85 92]]import numpy as npa = np.array([[1,2],[3,4]])b = np.array...原创 2019-10-31 17:01:54 · 217 阅读 · 0 评论 -
NumPy学习笔记19.矩阵库(Matrix)
import numpy.matlibimport numpy as npprint(np.matlib.empty((2,2))) # 填充为随机数据[[9.90263869e+067 8.01304531e+262] [2.60799828e-310 0.00000000e+000]]import numpy.matlibimport numpy as npprint(...原创 2019-10-31 15:49:00 · 223 阅读 · 0 评论 -
NumPy学习笔记18.字节交换;副本和视图
import numpy as npa = np.array([1,256,8755],dtype = np.int16)print('数组是:')print(a)print('以十六进制表示内存中的数据:')print(map(hex,a))# byteswap()函数通过传入true原地交换print('调用byteswap()函数:')print(a.byteswap(Tr...原创 2019-10-31 15:23:21 · 272 阅读 · 0 评论 -
NumPy学习笔记17.排序、条件刷选函数
import numpy as npa = np.array([[3,7],[9,1]])print('数组是:')print(a)print('\n')print('调用sort()函数:')print(np.sort(a))print('\n')print('按列排序:')print(np.sort(a, axis = 0))print('\n')# sort()函数中...原创 2019-10-31 14:44:08 · 267 阅读 · 0 评论 -
NumPy学习笔记16.统计函数
NumPy统计函数NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。numpy.amin() 用于计算数组中的元素沿指定轴的最小值。numpy.amax() 用于计算数组中的元素沿指定轴的最大值。import numpy as npa = np.array([[1,2,3],[4,5,6],[7,8,9]])print('数组是:')prin...原创 2019-10-30 11:33:55 · 289 阅读 · 0 评论 -
NumPy学习笔记15.算术函数
NumPy算术函数NumPy 算术函数包含简单的加减乘除: add(),subtract(),multiply() 和 divide()。注意:数组必须具有相同的形状或符合数组广播规则。import numpy as npa = np.arange(9,dtype = np.float_).reshape(3,3)print('第一个数组:')print(a)print('\n')...原创 2019-10-30 11:25:03 · 167 阅读 · 0 评论 -
NumPy学习笔记14.数学函数
NumPy数学函数NumPy包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等。三角函数sin()、cos()和tan()import numpy as npa = np.array([0,30,45,60,90])print('不同角度的正弦值:')# 通过乘 pi/180 转化为弧度print(np.sin(a*np.pi/180))print('\...原创 2019-10-30 11:19:19 · 309 阅读 · 0 评论 -
NumPy学习笔记13.字符串函数
NumPy字符串函数表格中的函数在字符数组类(numpy.char)中定义:函数描述add()对两个数组的逐个字符串元素进行连接multiply()返回按元素多重连接后的字符串center()居中字符串capitalize()将字符串第一个字母转换为大写title()将字符串的每个单词的第一个字母转换为大写lower()数组元素转换...原创 2019-10-30 11:08:31 · 258 阅读 · 0 评论 -
NumPy学习笔记12.位运算
import numpy as npprint('13和17的二进制形式:')a,b = 13,17print(bin(a),bin(b))print('\n')print('13和17的位与:')print(np.bitwise_and(13,17))13和17的二进制形式:0b1101 0b1000113和17的位与:1import numpy as np...原创 2019-10-30 10:46:47 · 192 阅读 · 0 评论 -
NumPy学习笔记11.数组操作
NumPy 数组操作NumPy中包含了一些函数用于处理数组,大概可分为以下几类:修改数组形状翻转数组修改数组维度连接数组分割数组数组元素的添加与删除修改数组形状函数描述reshape不改变数据的条件下修改形状flat数组元素迭代器flatten返回一份数组拷贝,对拷贝所做的修改不会影响原始数组ravel返回展开数组numpy...原创 2019-10-30 00:30:55 · 252 阅读 · 0 评论 -
NumPy学习笔记10.迭代数组
NumPy迭代数组NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。迭代器最基本的任务的可以完成对数组元素的访问。# 使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代import numpy as npa = np.arange(6).reshape(2,3)print('原始数组是:')print...原创 2019-10-21 01:00:04 · 250 阅读 · 0 评论 -
NumPy学习笔记09.广播(Broadcast)
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。import numpy as npa = np.array([1,2,3,4])b...原创 2019-10-20 18:20:28 · 200 阅读 · 0 评论 -
NumPy学习笔记08.高级索引
NumPy高级索引NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。整数数组索引# 获取数组中(0,0),(1,1)和(2,0)位置处的元素import numpy as npx = np.array([[1,2],[3,4],[5,6]])y = x[[0,1,2],[0,1,0]]prin...原创 2019-10-19 01:28:20 · 163 阅读 · 0 评论 -
NumPy学习笔记07.切片和索引
NumPy切片和索引ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。import numpy as npa = np.arange(10)s = s...原创 2019-10-18 20:51:11 · 248 阅读 · 0 评论 -
NumPy学习笔记06.从数组范围创建数组
NumPy 从数值范围创建数组numpy.arangenumpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象,函数格式如下:numpy.arange(start, stop, step, dtype)参数描述start起始值,默认为0stop终止值(不包含0)step步长,默认为1dtype返回ndarray的数据...原创 2019-10-18 02:45:32 · 209 阅读 · 0 评论 -
NumPy学习笔记05.从已有的数组创建数组
NumPy 从已有的数组创建数组numpy.asarraynumpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。numpy.asarray(a, dtype = None, order = None)参数描述a任意形式的输入参数,可以是,列表,列表的元祖,元祖,元祖的元祖,元祖的列...原创 2019-10-18 02:31:05 · 150 阅读 · 0 评论 -
NumPy学习笔记04.创建数组
NumPy 创建数组ndarray 数组除了可以使用底层 ndarray 构造器来创建外,还可以使用以下几种方式创建:numpy.emptynumpy.empty用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:numpy.empty(shape, dtype = float, order = 'C')参数描述shape数组形状dt...原创 2019-10-18 01:44:35 · 172 阅读 · 0 评论 -
NumPy学习笔记03.数组属性
1.数组属性numpy数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。numpy 的数组中比较重要 ndarray 对象属性有:属性说明ndarray.ndim秩,即轴的数量或维度的数量ndarray.shape数组的维度,对于矩阵,n行m列ndarray.size数组元素的总个数,相当于 .shape中n * m的值...原创 2019-10-18 01:23:03 · 754 阅读 · 0 评论 -
NumPy学习笔记02.数据类型
1.NumPy数据类型:numpy 支持的数据类型比 Python 内置的类型要多很多:名称描述bool_布尔型数据类型(True或者Flase)int_默认的整数类型(类似于C语言中的long,int32或int64intc与C的int类型一样,一般是int32或int64intp用于索引的整数类型(类似于C的ssize_t,一般情况下仍然是in...原创 2019-10-18 00:57:39 · 241 阅读 · 0 评论 -
NumPy学习笔记01.Ndarray对象
1.概念NumPy的Ndarray是一种N维数组对象:Ndarray用于存放同类型的元素的多维数组Ndarry的每个元素在内存中都有相同存储大小的区域ndarray 内部由以下内容组成:一个指向数据(内存或内存映射文件中的一块数据)的指针。数据类型或 dtype,描述在数组中的固定大小值的格子。一个表示数组形状(shape)的元组,表示各维度大小的元组。一个跨度元组(stride)...原创 2019-10-17 01:15:54 · 231 阅读 · 0 评论 -
NumPy学习笔记00.前言和安装
0.前言NumPy 官网http://www.numpy.org/ NumPy 源代码:https://github.com/numpy/numpy SciPy 官网:https://www.scipy.org/ SciPy 源代码:https://github.com/scipy/scipy Matplotlib 官网:https://matplotlib.org/ Matplo...原创 2019-10-15 22:12:21 · 241 阅读 · 0 评论