elevation mapping算法3之使用D435i相机离线或在线订阅点云和tf关系生成高程图

6 篇文章 24 订阅 ¥59.90 ¥99.00

0 引言

elevation mapping算法1已经成功编译安装elevation mapping高程图工程,并运行示例turtlesim3_waffle_demo,在仿真环境下,控制带有传感器的机器人生成高程图,简单熟悉了高程图的实际应用。elevation mapping算法2主要熟悉了该工程一些节点和参数的定义和说明,在此基础上,使用D435i相机发出的点云作为高程图的点云输入,本文主要学习如何离线输入点云生成高程图,进一步学习如何在线订阅点云生成高程图。

👉 elevation mapping github:https://github.com/ANYbotics/elevation_mapping

本文系统环境:

  • Ubuntu18.04
  • ROS-melodic
  • elevation mapping
  • D435i相机和驱动

1 数据

elevation mapping高程图工程主要的输入数据有三部分,topic类型分别是:点云(相机,雷达等)、协方差位姿(机器人,里程计等)和tf

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 23
    评论
elevation mapping算法是一种用于创建地形算法。它通过收集和分析地面高度数据,创建一个准确的三维地形模型。 该算法的第三个步骤是数据分析。在这个步骤中,算法将通过对地面高度数据的处理和分析,来推算出地面的真实形状和地形特征。 首先,算法会通过插值方法填补高度数据中的缺失点,以便获得连续的地面高度。插值方法可以根据周围已知高度点的值,对缺失点进行估算,以获取更为准确的高度。 然后,算法使用滤波器进行平滑处理。地面上的高度数据存在一定的噪音和不规则性,滤波器可以通过对高度值进行平均或加权平均,来减少这些不规则性,使地形模型更加平滑。 接下来,算法会进行地形特征的提取。通过计算地面高度的梯度和坡度,可以识别出地面的斜坡和边界等特征,从而更准确地反映地形的变化。该算法还可以通过计算地形曲率来检测地形的凹凸部分,以及计算地形曲率的方向来推断地形的坡度。 最后,算法生成最终的地形。在数据分析的过程中,算法不断地根据已有高度数据进行迭代,直到获得一个具有高度值和地形特征的完整地形模型。这个模型可以用于地形的可视化、地理信息的分析等应用。 总体而言,elevation mapping算法通过插值、平滑处理和特征提取等步骤,能够从地面高度数据中生成精确的地形,为地理研究和应用提供了重要的数据基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZPILOTE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值