整理:4篇在时序预测中成功应用改进注意力机制的研究论文

近年来,时序预测作为时间序列数据分析的核心任务,受到了越来越多的关注。无论是在金融市场、气象预报还是交通流量预测等实际应用中,准确且可靠的时序预测对决策至关重要。然而,传统时序预测方法在面对复杂的数据模式和长时间依赖性时常常遇到困难。这些方法通常依赖固定的特征选择和线性模型,无法有效应对数据中的非线性动态变化以及跨时间步长的依赖性,从而限制了预测精度。

为了解决这些问题,研究人员引入了注意力机制,将其集成到时序预测模型中。注意力机制能够动态分配权重,使模型能够灵活关注历史数据中最相关的时间点和特征。这种机制不仅显著提升了模型的预测性能,还增强了其处理复杂时序数据的能力。通过精准捕捉数据中的时序依赖性,注意力机制在应对多变量、长序列和非平稳数据等挑战时表现出色。

本文将介绍几篇在时序预测中成功应用改进注意力机制的研究论文,这些研究不仅展示了注意力机制在提升预测准确性方面的强大潜力,还探讨了其在处理复杂时序数据中的多样化应用。这些成果不仅扩展了时序预测的理论框架,也为实际应用提供了宝贵的支持,推动了这一领域的持续发展。

论文1

GMAN: A Graph Multi-Attention Network for Traffic Prediction

方法:

由于交通系统的复杂性及其受多种不断变化因素影响的特点,长期交通预测一直是一项极具挑战性的任务。在本文中,我们重点研究了时空因素对交通状况的影响,提出了一种名为图多重注意网络(GMAN)的新型方法,用于预测道路网络图中不同位置未来时间步的交通状况。GMAN 采用了编码器-解码器的架构,其中编码器和解码器均由多个时空注意块组成,旨在有效模拟时空因素对交通状况的复杂影响。编码器负责对输入的交通特征进行编码,而解码器则根据这些编码信息预测未来的交通序列。为了进一步增强模型的预测能力,在编码器和解码器之间引入了一个变换注意层,该层用于将编码后的交通特征转换为未来时间步的序列表示,并作为解码器的输入。这种变换注意机制通过直接模拟历史和未来时间步之间的关系,帮助缓解预测过程中时间步之间误差传播的问题。在两个真实的交通预测任务中,即交通量预测和交通速度预测,GMAN 展示了其卓越的性能。尤其是在 1 小时预测任务中,GMAN 在 MAE 测量指标上的表现比最先进的方法提高了 4%,证明了其在长期交通预测中的优越性。

图片

创新点:

(1)我们提出了空间和时间注意机制来分别模拟动态空间和非线性时间相关性。此外,我们设计了一个门控融合来自适应地融合空间和时间注意机制提取的信息。

(2)我们提出了一种转换注意力机制,将历史流量特征转换为未来的表示。该注意力机制模拟了历史和未来时间步骤之间的直接关系,以缓解错误传播的问题。

(3)我们在两个真实世界的交通数据集上评估了我们的图形多注意网络 (GMAN),并在 1 小时预测中观察到比最先进的基线方法高出 4% 的改进和卓越的容错能力。

结果:

图片

论文2

Dual Attention-Based Federated Learning for Wireless Traffic Prediction

方法:

无线流量预测在蜂窝网络的智能操作中扮演着关键角色,如负载感知资源管理和预测控制。然而,现有的预测方法通常依赖于集中式训练架构,这需要传输大量流量数据,从而可能导致延迟和隐私问题。为了解决这些问题,我们提出了一种新颖的无线流量预测框架,名为基于双重注意的联邦学习 (FedDA)。该框架允许多个边缘客户端协作训练高质量的预测模型,同时确保原始数据保存在本地,减少数据传输引发的隐私风险。FedDA 通过使用小型增强数据集,将客户端分组为不同的集群,以便更好地捕捉多样的无线流量模式。接着,在客户端之间共享一个准全局模型,作为先验知识,以应对联邦学习中常见的统计异质性挑战。为进一步提升模型的准确性,FedDA 引入了一种双重注意机制,在构建全局模型时,不仅聚合集群内的模型,还考虑集群间的模型,避免了简单平均局部模型权重的不足。通过在两个真实的无线流量数据集上进行广泛的实验,结果显示,FedDA 显著优于现有的最先进方法,两个数据集的平均均方误差性能分别提升了 10% 和 30%。这些成果证明了 FedDA 在无线流量预测中的卓越性能和应用潜力。

图片

图片

创新点:

(1)我们设计了一种数据增强辅助的迭代聚类策略,以增强数据和客户端的地理位置作为聚类参考,同时捕获客户端的各种流量模式并保护数据隐私。

(2)我们引入了一个准全局模型,它是一种中间辅助工具,用于缓解由于从不同客户端收集的流量模式之间的统计异质性而导致的全局模型的泛化难度。

(3)我们提出了 FedDA 框架,该框架由两种高级聚合设置组成,即基于双重注意的模型聚合机制和分层聚合结构。这样,中央服务器不仅可以捕获特定于集群的数据模式,还可以确保全局模型的可转移性。

(4)我们通过在两个真实数据集上进行测试来验证 FedDA 框架的有效性和效率,并将实验结果与现有算法生成的结果进行比较。

结果:

图片

论文3

MA2GCN: Multi Adjacency relationship Attention Graph Convolutional Networks for Traffic Prediction using Trajectory data

方法:

交通拥堵问题不仅造成大量的经济损失,而且严重危害城市环境,预测交通拥堵具有重要的现实意义。迄今为止,大多数研究都是基于放置在不同道路上的传感器的历史数据来预测未来的交通流量和速度,分析某一路段的交通拥堵状况。但由于传感器的位置固定,很难挖掘新的信息。另一方面,车辆轨迹数据更加灵活,可以根据需要提取交通信息。因此,我们提出了一种新的交通拥堵预测模型——多邻接关系注意图卷积网络(MA2GCN)。该模型将车辆轨迹数据转化为网格形式的图结构数据,并提出了基于不同网格之间移动性的车辆进出矩阵。同时,为了提高模型的性能,本文还构建了一种新的自适应邻接矩阵生成方法和邻接矩阵注意模块。该模型主要使用门控时间卷积和图卷积分别提取时间和空间信息。与多个基线相比,我们的模型在上海出租车GPS轨迹数据集上取得了最佳性能。

图片

图片

创新点:

(1)我们不使用基于传感器或进出流的数据集,而是直接挖掘轨迹数据并将其转换为图结构数据以进行交通预测。

(2)我们根据网格间车辆进出数据构建了移动邻接矩阵。此外,我们提出了一种多邻接关系注意机制和一种新型自适应图生成器。

(3)与多个基线相比,我们提出的多邻接关系注意图卷积网络(MA2GCN)在上海出租车 GPS 轨迹数据集上取得了最佳性能。

结果:

图片

论文4

A Graph and Attentive Multi-Path Convolutional Network for Traffic Prediction

方法:

交通预测因交通系统的复杂性和不断变化的特性而成为一个重要且极具挑战性的任务。为应对这些挑战,我们提出了一种名为图形和注意力多路径卷积网络(GAMCN)的模型,用于预测未来道路网络上的交通状况,例如交通速度。我们的模型重点考虑了影响交通状况的空间和时间因素。为了建模空间因素,我们设计了一种名为 LPGCN 的图形卷积网络(GCN)变体,该变体将道路网络图的顶点嵌入到潜在空间中,使得具有相关交通状况的顶点彼此更接近。通过这种方法,LPGCN 能有效捕捉空间上的交通模式和关系。在建模时间因素方面,我们使用了多路径卷积神经网络(CNN),以学习过去交通状况的不同组合对未来交通状况的联合影响。为了进一步增强预测的准确性,我们引入了注意力机制,该机制对交通状况的周期性模式进行编码,并通过预测时间嵌入调节联合影响。我们在实际道路网络和交通数据上对 GAMCN 模型进行了评估。实验结果显示,与最先进的交通预测模型相比,我们的模型在预测误差方面提升了 18.9%,在预测效率方面提升了 23.4%。这些结果表明,GAMCN 模型在交通预测中的表现优越,能够更有效地捕捉交通模式和提高预测准确性。

图片

创新点:

(1)为了对道路网络图中不同顶点的交通状况的(空间)相关性进行建模,我们提出了一种基于 GCN 的模型,名为 LPGCN,该模型学习过渡矩阵来编码顶点之间的潜在交通模式相关性。这个学习到的矩阵可以与图邻接矩阵一起使用,也可以替换邻接矩阵,这使得我们的模型即使不知道邻接矩阵也可以用于应用程序。

(2)为了对不同时间点的交通状况的(时间)相关性进行建模,我们建议使用多路径 CNN 来学习过去时间点的不同组合中观察到的交通状况的联合影响。每个 CNN 路径都关注不同的组合。学习到的联合影响进一步通过使用交通预测时间嵌入的注意力机制进行调节,以反映交通状况的周期性模式。

(3)我们对现实世界的道路网络和交通数据进行了实验。结果表明:1. GAMCN 的预测误差比最先进的交通预测模型高出 18.9%,预测效率比最先进的交通预测模型高出 23.4%;2. GAMCN 可以轻松与生成对抗网络相结合,做出的预测不仅高度准确,而且与基本事实具有相似的分布。

结果:

图片

图片

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值