UMI绝对定量转录组+代谢组联合研究β-葡萄糖苷酶抑制剂在草菇采后贮藏中的应用前景

该研究通过UMI绝对定量转录组和代谢组学方法,探究β-葡萄糖苷酶抑制剂在草菇低温自溶中的潜在应用。研究发现抑制剂影响了草菇的基因表达和代谢途径,特别是酪氨酸代谢和淀粉、蔗糖代谢。酪氨酸酶和β-葡萄糖苷酶在这一过程中起关键作用。实验验证表明,抑制剂可能通过降低这两种酶的活性提高草菇的低温耐受性,为草菇的采后保鲜提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

派森诺与上海市农业科学院携手合作,于近期在《Postharvest Biology and Technology》上发表了β-葡萄糖苷酶抑制剂在草菇采后管理中应用的研究成果。

草菇(Volvariella volvacea)又称兰花菇,味道鲜美,营养丰富,脂质含量低。低温贮藏是大多数食用菌保存和运输的常规方法。然而,在传统的保存温度(4℃)下,草菇会变软、液化,甚至腐烂,这种现象被称为“低温自溶”。草菇的低温自溶限制了这种商业栽培蘑菇的采后贮藏和销售。已有研究表明,UBEV2特异性泛素结合酶E2 (UBEV2)(L345-0044)是一种有效防止低温自溶的抑制剂。然而L345-0044作为食品防腐剂的安全性是有争议的。因此,寻找一种更为安全的保存草菇的食品添加剂是十分必要的。

本研究采用绝对定量转录组和代谢组学方法,分析在4℃条件下L345-0044处理后草菇子实体的基因和代谢产物变化,并揭示UBEV2介导的酶通路。本文提供了一种更为安全的方法来管理草菇的采后贮藏,并有望应用于商业栽培模式。

研究路线

image.png

研究结果

1.草菇子实体的UMI绝对定量转录组

对草菇样本进行UMI绝对定量转录组分析。结果显示,0H_vs_24H中有5255个差异表达基因(DEGs),0H_vs_L24H中有5313个差异表达基因,24H_vs_L24H中有1218个差异表达基因(图2A)。主成分分析显示,0H、24H和L24H组内具有很好的重复性并且组间可以明显的分开(图1B)。Venn分析显示,0H_vs_24H、0H_vs_L24H、24H_vs_L24H比较组间共有889个差异重叠基因(图

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值