大家好,我是玄姐。
正文开始之前,先给我自己打个广告,马上过年了,为了回馈粉丝们的支持,原价199元的《3天 AI Agent 智能体项目实战直播训练营》,直接降价到19元,今天再开放一天报名特权,仅限99名。
回到正题。
构建一个高效运作的 AI Agent 智能体系统有哪些关键步骤?在开发过程中,如何提前识别并解决那些可能在系统上线后带来严重问题的隐患?
为了解答这些问题,我们需要将 AI Agent 智能体系统拆分为三个核心模块:工具、推理和执行。每个模块都面临着独特的挑战。一个模块的错误可能会连锁反应,以不可预见的方式影响其他模块,导致系统故障。例如,信息检索可能拉取到无关数据;推理错误可能导致工作流程不完整或陷入死循环;执行环节在生产环境中可能会出现失误。
AI Agent 智能体的强度取决于其最薄弱的环节。以下指南将指导你如何设计系统以规避这些风险。我们的目标是:在关键时刻打造一个稳定、可预测且具备韧性的 AI Agent 智能体系统。
—1—
AI Agent 智能体总体架构设计
AI Agent 智能体系统在三个功能性层面上运作:工具层面、推理层面和执行层面。每个层面承担着独特的职能,确保代理能够高效地获取、分析和响应信息。掌握这些层面之间的相互关系对于构建既实用又具有扩展性的系统至关重要。
以下图表描绘了这三个层面及其构成要素:
工具层面:构成 AI Agent 智能体系统的基础。这一层面负责与外部数据源和服务进行交互,涉及 API 调用、向量数据库、实时运营数据、知识库以及用户互动等。它的任务是收集系统所需的原生数据。精心设计的工具可以保障 AI Agent 智能体有效地检索到相关且高质量的信息。
执行层面:亦称作协调层面。这一层面负责调解大语言模型(LLM)与外部环境(即工具)之间的互动,并处理用户交互(如果有的话)。它接收 LLM 关于后续操作的指令,执行这些操作,并将执行结果反馈给推理层面的 LLM。
推理层面:AI Agent 智能体系统的智能中枢。这一层面利用大语言模型(LLM)来处理已检索的信息,并决定 AI Agent 智能体的下一步行动。它依据上下文、逻辑规则和既定目标来做出决策。不恰当的推理可能会导致错误,如进行重复的查询或采取不一致的行动。
—2—
AI Agent 智能体工作流设计
执行/编排层是推动 AI Agent 智能体系统行动的核心动力。这一层构成了一个主导的处理循环,其流程大致如下所示:
AI Agent 智能体应用与大语言模型(LLM)的初步交互设定了系统旨在达成的总体目标。这些目标可能包括各种任务,比如:创建房地产