爆火 | API 终将淘汰,MCP+LLM+向量数据库才是 Agent 开发新范式

大家好,我是玄姐。

"大模型虽然智能,但似乎在面对各种问题时仍显得力不从心。"

许多用户在运用大模型时,可能都会遇到这样的困惑。

举例来说,询问 DeepSeek 关于即将到来的清明节的习俗,AI 能够信手拈来地提供答案;然而,当要求它制定一份为期三天两晚的清明旅行计划时,其给出的方案似乎总是不够完美。

原因显而易见,在制定旅行计划时,大模型缺少了天气、机票、铁路、导航、酒店等重要数据与工具的接入。这就好比一个极具智慧的大脑,却缺乏了外部的“数据”输入和强健的四肢支持。

在这种情况下,为了提升大模型的能力,通过为其配备多样化的外部工具和数据库,Agent 技术最近2年来备受关注。

然而,要打造一个高度智能的 Agent,通常需要集成大量的外部工具。在传统的 Agent 开发过程中,每增加一个工具,就需要为大模型编写一个新的 API,这使得系统变得越来越复杂。

MCP(模型上下文协议)的问世改变了这一现状。

去年11月,硅谷 AI 巨头 Anthropic 正式发布了MCP——模型上下文协议,使得开发者只需编写一次代码,就能让大模型对接不同的 API、数据库与文件系统,极大简化了模型的配置过程。

正因为如此,MCP 一经推出,便被誉为最强大的标准化接口协议,一夜之间在全球大模型领域掀起热潮,成为新一代 Agent 工具调用的标准协议。

那么,MCP 究竟是什么呢?我们又该如何将其与 Milvus 相结合?

1

模型上下文协议(MCP)是什么

MCP 是一种开源协议,它的目标是对大模型与各类数据源及工具的互联方式进行标准化。

借助 MCP,大模型(LLM)就如同配备了通用的 Type C 充电接口,能够迅速连接到任何支持 MCP 的工具。

从技术架构的角度来看,MCP 实行的是客户端-服务器模型,其中,主应用程序能够与多个工具服务器建立连接:

MCP 主机:指那些希望通过 MCP 来获取数据的程序,例如 Claude 的桌面应用、集成开发环境(IDE)或者 AI 工具(Cursor、Agents 等)。

MCP 客户端:这是与服务器建立一对一连接的协议客户端。

MCP 服务器:通过标准化的模型上下文协议,连接到具有特定功能的轻量级程序。

本地数据源:指的是 MCP 服务器可以安全访问的计算机文件、数据库和服务。

远程服务:MCP 服务器能够连接到互联网上的外部系统(例如,通过 API 进行连接)。

图片

2

为何要将 Milvus 与 MCP 结合使用?

Milvus 不仅在处理大规模数据方面表现出色,其高效的相似性搜索能力和可扩展的向量存储特性,使其成为 Agent 智能体的首选解决方案。

借助 MCP 这位“理想的协调者”,开发者能够在不增加额外工程量的情况下,轻松实现大模型对向量数据库知识的高效、标准化访问。

那么,通过 MCP 整合 Milvus,我们将能够享受到哪些功能呢?

  • 复杂的向量相似性搜索能力

  • 索引的创建与操作

  • Schema 分析:可以直接在 AI 代理界面中检查集合的 Schema、字段类型和索引设置。

  • 实时监控:获取集合的统计信息、实体数量和数据库运行状态指标,确保系统性能最优。

  • 动态操作:根据需求变化,即时创建新集合、插入数据或修改 Schema。

  • 全文搜索:从 Milvus 2.5 版本开始,新版本均支持全文搜索功能。

3

如何将 Milvus 通过 MCP 与大模型集成?

Milvus MCP 服务器兼容支持 MCP 的各种大模型(LLM)应用程序,其中包括但不限于以下几款:

  • Claude Desktop:由 Anthropic 开发的 Claude 桌面应用程序。

  • Cursor:一款 AI 代码编辑器,其 Composer 功能支持 MCP。

  • 自定义 MCP 客户端:任何遵循 MCP 客户端规范开发的应用程序。

在接下来的步骤中,我们将通过 Claude Desktop 和 Cursor 来展示部署过程。

第一步:环境准备

在使用 MCP 服务器之前,请确保已经准备好:

  1. Python 3.10 或更高版本;

  2. 正在运行的 Milvus 实例(本地或远程)

  3. uv 工具

第二步:配置指南

我们推荐,Milvus MCP Server 直接使用 uv 方式运行。以下案例中的  Claude Desktop 和 Cursor 都可以如此配置。

git clone https://github.com/zilliztech/mcp-server-milvus.git
cd mcp-server-milvus

接下来,我们就可以直接运行 server 了,如下所示:

uv run src/mcp_server_milvus/server.py --milvus-uri http://localhost:19530

第三步:与 Claude Desktop 集成

Step1:从 https://claude.ai/download 安装 Claude Desktop

Step2:打开你的 Claude Desktop 配置:

macOS:

~/Library/Application Support/Claude/claude_desktop_config.json

Step3:添加以下配置

{  "mcpServers": {    "milvus": {      "command": "/PATH/TO/uv",      "args": [        "--directory",        "/path/to/mcp-server-milvus/src/mcp_server_milvus",        "run",        "server.py",        "--milvus-uri",        "http://localhost:19530"      ]    }  }}

Step4:重启 Claude 桌面

第四步:与 Cursor 集成

Cursor 可以通过 Composer 中的 Agent 功能支持 MCP工具。我们可以通过两种方式将 Milvus MCP 服务器添加到 Cursor:

方法一 :使用 Cursor 设置 UI

  • Step1:转至 Cursor Settings> Features>MCP

  • Step2:+ Add New MCP Server 按钮

  • Step3 填写配置:Type 选择 stdio;name 选择milvus;Command 如下

/PATH/TO/uv --directory /path/to/mcp-server-milvus/src/mcp_server_milvus run server.py --milvus-uri http://127.0.0.1:19530

⚠️注意:要使用127.0.0.1而不是 localhost,可以避免潜在的 DNS 解析问题。

方法二:使用项目特定配置(推荐)

Step1:在项目根目录中创建一个. cursor/mcp.json 文件:

mkdir -p /path/to/your/project/.cursor

Step2:创建一个 mcp.json 文件,内容如下:

{  "mcpServers": {    "milvus": {      "command": "/PATH/TO/uv",      "args": [        "--directory",        "/path/to/mcp-server-milvus/src/mcp_server_milvus",        "run",        "server.py",        "--milvus-uri",        "http://127.0.0.1:19530"      ]    }  }}

Step3:重新启动 Cursor 或重新加载窗口

添加 server 后,我们需要点击 MCP 设置中的刷新按钮来激活工具列表。这样,当我们的查询相关内容的时候,Composer Agent 就能自动使用 Milvus 工具。

Step4:验证集成效果

要验证 Cursor 是否已成功与 Milvus MCP 服务器集成:

  • 打开 Cursor Settings > Features > MCP

  • 检查“Milvus”是否出现在 MCP 服务器列表中

  • 验证工具是否集成成功

    (例如 milvus_list_collections、milvus_vector_search 等)

4

案例展示:Claude Desktop+MCP+Milvus 效果展示

案例 1:提问

首先,我们给出如下一个提问:

What are the collections I have in my Milvus DB?

Claude 马上就会使用 MCP 在 Milvus 向量数据库中检索和以上提问有关的数据。

案例 2:文档搜索

首先,我们明确一下需求:

 Claude 将利用 Milvus 的全文搜索功能来检索相关文档:

Cursor + MCP + Milvus  效果展示 

在 Cursor 的 Composer 中,您可以进行如下操作:

Create a new collection called 'articles' in Milvus with fields for title (string), content (string), and a vector field (128 dimensions)

Cursor 将使用 MCP 服务器执行此操作:

总之,随着 MCP、DeepSeek 和 Manus 的爆火,2025年必定是 AI 大模型应用的爆发之年,其中最重要的应用形态就是 AI Agent 智能体,为了帮助大家快速和低成本掌握 AI Agent 智能体技术,我和团队落地大模型项目3年,帮助60多家企业落地近100个项目,根据我们企业级实战的项目经验,打造基于 DeepSeek 的 AI Agent 项目实战直播训练营,截至今天已经报名2万名学员,如此火爆!原价199元,为了回馈粉丝的支持,价格直接降到 19元,再开放今天一天的报名权限,仅限99名,抢完立刻恢复到199元。

5

3天 Agent 智能体项目实战直播课

3天的直播课,带你快速掌握基于 DeepSeek 的AI Agent 智能体核心技术和企业级项目实践经验。

模块一:AI Agent 智能体技术原理篇

全面拆解 AI Agent 智能体技术原理,深度掌握基于 DeepSeek 的 AI Agent 智能体三大能力及其运行机制。

模块二:AI Agent 智能体应用开发实战篇

深度讲解基于 DeepSeek 的 AI Agent 智能体技术选型及开发实践,学会开发 AI Agent 智能体核心技术能力。

模块三:AI Agent 智能体企业级案例实战篇

基于 DeepSeek,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI Agent 智能体项目全流程重点难点问题解决。

图片

3天时间,你能学会什么?

在真实项目实践中,你会获得4项硬核能力:

第一、全面了解 DeepSeek 大模型AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 Dify/Coze 平台、DeepSeek、LangChain、AutoGen 等开发框架,为企业级技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成基于 DeepSeek 的 AI Agent 智能体的设计开发和维护,学会解决企业级实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升核心技术竞争力。

限时优惠:

原价199元,回馈粉丝们支持,现在报名只需19元文末再赠送5个报名福利!这是一个难得的机会,让我们一起踏上 AI Agent 智能技术之旅,开启技术新纪元!

6

我为什么推荐这门课给你?

第一、这是大势所趋随着 DeepSeek 春节期间的爆火,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍;

图片

第二、现在处于红利期,先入场的同学至少会享受4~5年的红利,拿高薪,并且会掌握技术的主动权和职业选择权。

图片

第三、企业需求旺盛,越来越多的企业已经在 AI Agent 智能体领域进行落地,这为我们提供了丰富的岗位机会和广阔的发展空间。

图片

第四、大厂都在战略布局的方向,不管是国外的微软、谷歌,还是国内的百度等大厂都在战略布局,随着春节期间 DeepSeek 火出圈,2025年必定是 AI Agent 智能体商业化的一年。

图片

我和我的团队在过去两年里一直专注于大模型应用技术的研究,我想强调的是:大模型的应用价值巨大,AI Agent 智能体的潜力无限!正如今年频繁被提及的那句话:“未来所有的应用都将被 AI Agent 智能体重新塑造。”在这两年,尤其是近三年中,我们团队已经协助超过60家企业成功实施了将近100个 AI Agent 智能体项目。我个人深切体会到:越来越多的企业正逐步推进 AI Agent 智能体项目的落地。

AI Agent 智能体的重要性不言而喻,但其开发难度同样不容小觑。经过这两年的实践,我得出的结论是,要开发一个既可靠又稳定的 AI Agent 智能体应用极其挑战。大模型技术的复杂性、推理的不确定性、响应速度和性能问题等诸多难点,使得许多人对此望而却步,或者面对问题束手无策。对于一般的技术人员来说,想要熟练掌握 AI Agent 智能体的开发,确实是一项艰巨的任务。

为此我特意打造了一个为期3天的基于 DeepSeek 的 AI Agent 智能体企业实战训练营:这个训练营是我和团队落地大模型项目3年,根据我们企业级实战的项目经验,打造了基于 DeepSeek 的3天 AI Agent 项目实战直播训练营。

图片

课程原价199元回馈粉丝们支持,现在仅花19元就能拿下!文末再赠送5个报名福利!抢完立刻恢复199元!

7

今天报名再送5个配套福利

配套福利一:清华大学:DeepSeek 从入门到精通(2025)104 张页面,资料比较全,包括:DeeSeek 核心技术、DeepSeek 是什么?能做什么?如何使用 DeepSeek 等等

图片

配套福利二:AI Agent 智能体训练营配套学习资料,包括:PPT 课件、实战代码、企业级智能体案例和补充学习资料。

图片

配套福利三:AI Agent 智能体训练营学习笔记包含3天直播的所有精华

图片

配套福利四AI Agent 智能体大厂面试真题100道!覆盖百度、阿里、腾讯、字节、美团、滴滴等大厂的100道真题,不论是跳槽还是升职加薪,参考意义都重大!

图片

配套福利五2024年中国 AI Agent 智能体行业研究报告!AI Agent 智能体是新的应用形态,大模型时代的“APP”,技术范式也发生了很大的变化, 此份研究报告探索新一代人机交互及协作范式,覆盖技术、产品、商业、企业落地应用等方面,非常值得一读!

图片

原价199元,回馈粉丝们支持,现在19元就能拿下!

8

添加助教直播学习

购买后,添加助理进行直播学习👇

图片

报名完添加助教二维码,立刻领取5重福利

参考来源:https://mp.weixin.qq.com/s/NQaFanpMDiZXrOe3i_AHsA

⬇戳”阅读原文“,立即报名!

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值