MCP、RAG、Agent之间的概念和关系,被我和AI协作的12张图总结了

MCP、RAG、Agent 最近太火了,

搞 AI 的都在聊,但发现身边很多朋友其实并不太懂这些概念

花了一整天和 AI 协作,终于把这些复杂概念画成了 10 张易懂的图解

从 MCP 的提示混合机制,到 RAG 的知识检索增强,再到 Agent 的自主决策框架,

每张图都尽量简化到小白也能看懂的程度。

建议:从文意到解意到图意去理解。

其实技术没那么难懂,只是需要有人用简单方式解释而已。


本意:MCP、RAG、Agent:概念与关系

核心概念

RAG(检索增强生成)

RAG将信息检索与文本生成相结合,创造更准确、信息更充分的回应。

  • 功能:从知识库中检索相关文档,并用它们增强生成过程

  • 主要优势:使AI回应建立在事实信息基础上,减少幻觉(hallucinations)

  • 组成部分:知识库、检索组件(嵌入模型和向量数据库)、生成模型(语言模型)

Agent(智能代理)

一种能够感知、决策和行动以实现特定目标的自主AI系统。

  • 功能:基于观察和目标在环境中采取行动

  • 核心组件:感知模块、推理/决策模块、工具使用能力

  • 例子:客户服务代理、数据分析代理、复杂任务处理代理

MCP(模型上下文协议)

一种连接AI助手与外部系统的开放标准,使模型能够获取上下文信息。

  • 功能:实现AI模型与外部数据源和工具的标准化通信

  • 主要优势:提供统一接口,简化AI与各类系统的集成

  • 组成部分:客户端-服务器架构、标准化通信协议、工具调用接口

概念之间的关系

RAG ↔ Agent

  • RAG常作为代理内的知识组件,提供事实基础

  • 代理利用RAG访问相关信息,做出更明智的决策

  • 当结合使用(Agentic RAG)时,代理的决策能力与RAG的知识能力相互增强

Agent ↔ MCP

  • MCP为代理提供与外部系统交互的标准化接口

  • 代理可以通过MCP调用工具、获取数据,扩展其行动能力

  • MCP简化了代理与多种外部服务的集成,提高了开发效率

MCP ↔ RAG

  • MCP可以作为RAG系统获取外部知识的通道

  • 通过MCP连接的数据源可以丰富RAG的知识库

  • MCP标准化了RAG系统访问各类数据仓库的方式

实际实现

在一个完整的AI系统中,这些元素协同工作:

  1. 1. 代理通过MCP与外部系统建立连接

  2. 2. 代理使用RAG检索并整合相关知识

  3. 3. 系统结合决策能力和事实信息处理复杂任务

这种整合方法创造出比任何单一组件都更强大、更可靠、更适应性强的AI系统,

能够理解上下文,检索相关信息,并采取适当行动完成任务。


解意:MCP、RAG、Agent:概念与关系

原始概念

您提供了关于RAG(检索增强生成)、Agent(智能代理)和MCP(模型上下文协议)的技术文档,

这些是现代AI系统的三个关键组件及其相互关系。

核心解读

这三个概念实际上是现代AI系统的三种基本能力:

  • RAG: AI的"查资料"能力

  • Agent: AI的"思考决策"能力

  • MCP: AI的"使用工具"能力

当这三种能力结合在一起,AI就能像一个全能助手那样工作了。

词汇简化

  • RAG(检索增强生成):让AI能查找事实信息并用它来回答问题的技术,就像给AI配了一个图书馆

  • 幻觉(hallucinations):AI编造出来的不真实信息,就像人做白日梦

  • 嵌入模型:把文字转换成数字的工具,让计算机能理解文字的含义

  • 向量数据库:存储已转换成数字的文字信息的仓库

  • Agent(智能代理):能自己做决定并采取行动的AI系统,就像一个有自主性的助手

  • MCP(模型上下文协议):AI与外部工具和系统交流的标准语言,就像各种设备之间的通用转接头

句式简化

原文:"RAG将信息检索与文本生成相结合,创造更准确、信息更充分的回应。"

简化:RAG让AI先查资料,再回答问题,这样回答会更准确。

原文:"Agent是一种能够感知、决策和行动以实现特定目标的自主AI系统。"

简化:Agent是能自己思考并采取行动来完成任务的AI。

原文:"MCP是一种连接AI助手与外部系统的开放标准,使模型能够获取上下文信息。"

简化:MCP是让AI能够与外部工具交流的通用语言。

生活例子

RAG就像一个认真的学生:想象一个学生写论文。不懂的内容,他不会瞎编,而是去图书馆查资料,找到相关书籍,然后基于这些可靠信息来写论文。RAG就是AI的"查资料"能力。

Agent就像一个私人助理:假设你告诉助理:"帮我安排下周去北京的商务旅行。"一个好助理会自己决定需要预订机票、酒店、安排会议时间等,并自己完成这些任务。Agent就是AI的这种"理解目标并自主行动"的能力。

MCP就像一个万能转接头:你可能有过这种经历:带着国内的充电器去国外,发现插不进插座。这时你需要一个转接头。MCP就是AI的"转接头",让AI能够连接和使用各种外部工具和数据源。

知识关联

想想你自己如何完成一项复杂任务:

  1. 1. 你需要知识(类似RAG)

  2. 2. 你需要决策能力(类似Agent)

  3. 3. 你需要使用工具的能力(类似MCP)

例如,烹饪一道新菜:你会查菜谱(RAG),根据实际情况调整做法(Agent),使用各种厨具(通过MCP连接)。

启发思考

  • 如果AI只有RAG能力(只会查资料),但不会思考和使用工具,它能解决什么样的问题?有什么局限?

  • 如果AI只能思考决策(Agent),但没有可靠的信息来源(RAG),会发生什么?

  • 没有标准接口(MCP),每个工具都需要特殊连接方式,会给AI使用工具带来什么挑战?

  • 你能想象这三种能力完美结合的AI能帮你完成什么任务吗?

重新表达

你有一个超级智能助手。这个助手有三种超能力:

首先,它有"超级记忆"(RAG)。不管你问什么,它都能迅速查找到准确的信息,而不是凭空想象或编造答案。比如你问"昨天的股市怎么样",它会立刻找出真实数据告诉你。

其次,它有"独立思考"的能力(Agent)。你只需告诉它你想要什么结果,它就能自己思考并决定如何一步步实现。比如你说"帮我策划一次旅行",它会自动考虑预算、时间、景点等因素并给出完整计划。

第三,它有"万能连接器"(MCP),能够使用各种外部工具和系统。需要发邮件?预订机票?计算复杂数学问题?它都能连接到适当的工具来完成。

当这三种能力结合在一起,你就拥有了一个既知识丰富,又能独立思考,还能使用各种工具的全能助手。这就是现代AI系统通过结合RAG、Agent和MCP所追求的目标。


图意:MCP、RAG、Agent:概念与关系

概念:

Image

Image

Image

Image

Image

Image

Image

Image

Image

关系:

Image

Image

Image


 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 蓝桥杯竞赛中MCP4017数字电位器写入值与输出电压关系 #### MCP4017工作原理概述 MCP4017是一种可编程电阻器件,能够通过向其内部寄存器写入特定数值来调整阻值大小。该芯片具有非易失性存储功能,在断电重启后仍能保持上次设置的状态。 #### 写入值到输出电压映射机制 当向MCP4017发送控制指令时,实际改变的是内置滑动触点的位置,从而影响两端之间的有效电阻[Rmin, Rmax]范围内的具体阻抗水平。对于给定的最大最小端口间总电阻而言,假设为R_total,则任意时刻由软件设定的目标位置所对应的物理量级可通过下述公式计算得出: \[ V_{out} = \frac{V_{in}}{(R_1 + R_w)} × (R_w + WiperPosition×\Delta R)\] 其中\(WiperPosition\)表示当前擦除片相对起点偏移的比例因子;而\(\Delta R=R_max-R_min\)代表整个行程范围内允许变化的最大幅度差额[^1]。 #### 实际应用中的测量方法 为了验证上述理论模型以及确保硬件连接无误,通常会借助于单片机系统的模拟输入接口(即ADC单元),周期性地获取经过分压网络后的即时信号强度,并据此推算出实时的工作状态参数。例如,在提供的代码片段里展示了如何利用STM32系列MCU完成这一过程:先触发一次完整的采样流程,随后依据量化等级反推出相应的电气特性指标[^3]。 ```cpp // ADC_proc 函数用于执行ADC(模数转换器)的数据采集操作 void ADC_proc() { // rank1: 开始ADC转换,采集R38的电压值 HAL_ADC_Start(&hadc1); float volt_r38 = HAL_ADC_GetValue(&hadc1) / 4096.0f * 3.3f; // rank2: 开始ADC转换,采集MCP的电压值 HAL_ADC_Start(&hadc1); float volt_mcp = HAL_ADC_GetValue(&hadc1) / 4096.0f * 3.3f; } ``` 此函数实现了对指定传感器节点处瞬态响应特性的监测记录,进而辅助后续分析处理环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值