3维空间中点、线、面之间的数学关系(python代码)

本文详细介绍了三维空间中平面的定义,包括法向量和已知点的重要性。阐述了叉乘和点乘的区别,叉乘用于获取垂直向量,点乘用于计算夹角和投影。接着,解析了如何求取两个平面的交线,通过法向量的叉乘得到交线方向,并给出Python代码示例。最后,讨论了面与线的交点问题,通过点乘和线性代数方法求解交点坐标。内容涉及3D数学和计算机图形学的基础知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 面的定义
三维空间中的平面由两个量确定:
① 一个法向量(垂直于该平面的向量)
② 一个已知点(位于该平面上的一个点
2 叉乘和点乘的区别

2.1叉乘的计算方式,叉乘用来得到垂直于两条向量的向量。
在这里插入图片描述
2.2点乘的计算方式,内积(点乘)的几何意义包括:表征或计算两个向量之间的夹角,b向量在a向量方向上的投影.
在这里插入图片描述
叉乘的结果:向量a×向量b(×为向量叉乘),若结果小于0,表示向量b在向量a的顺时针方向;若结果大于0,表示向量b在向量a的逆时针方向。
二维的叉乘,|向量a×向量b|表示物理意义是平行四边形的面积。

  • 面和面的交线
    **1.*面的方程一般式为:Ax+By+Cz+D=0 (参数,A,B,C,D是描述平面空间特征的常数), 其中(A,B,C)为平面的法向量,D为将已知点带入得到的补偿值。
    2.1求取面与面的交线,已知条件:法向量和已知点
    2.2公式推导:
    平面1:a1x+b1y+c1z+d1=0;平面2:a2x+b2y+c2z+d2=0
    平面法向量;n1=(a1,b1,c1),n2=(a2,b2,c2)
    交线的方向向量n=n1×n2=(b1c2-c1b2,c1a2-a1c2,a1b2-b1a2)
    设直线上任意一点为(x,y,z)
    令x=0,得:
    b1y+c1z+d1=0,b2y+c2z+d2=0,

    y=-(c1z+d1)/b1=-(c2z+d2)/b2
    解得:
    z=-(d1/b1-d2/b2)/(c1/b1-c2/b2)
    y=-c1/b1z-d1/b1
    =c1
    (d1/b1-d2/b2)/b1/(c1/b1-c2/b2)-d1/b1
    由直线方向向量和一点坐标即可确定该直线。
    3 python代码如下
       #两个面 Axial 和 Coronal ,两个面的法向量为normalAxial和normalCoronal,两个面上的点为positionAxial和positionCoronal
       #对两个面的法向量进行叉乘,得到交线的方向向量
        vectorAC = np.cross(normalAxial, normalCoronal)
        print(vectorAC)
        # axial plane
        a1=normalAxial[0]
        b1=normalAxial[1]
        c1=normalAxial[2]
        d1 = -np.dot(positionAxial,normalAxial)
        # coronal plane
        a2=normalCoronal[0]
        b2=normalCoronal[1]
        c2=normalCoronal[2]
        d2 = -np.dot(positionCoronal,normalCoronal)
        if  normalCoronal[0]!=0 and normalCoronal[1]!=0:
            print("平面旋转计算中")
            # tempz = -(d1 / b1 - d2 / b2) / (a1 / b1 - a2 / b2)
            tempz = -d1
            print("tempz",tempz)
            #
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值