一个二元一阶微分方程组引发的思考

一般来说,解二元一阶微分方程组有2种方法,消元法和求导法
(1)如果方程组是2个形如 a d x d t + b d y d t + f ( x , y ) = 0 \mathrm{a} \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+b \frac{d y}{d t}+f(x, y)=0 adtdx+bdtdy+f(x,y)=0 的方程组成,那么可以使用消元法消去t,得到的特解的形式是关于x和y的隐函数,即g(x,y)=0
(2)如果方程组是二元一阶常系数线性微分方程组,即2个形如 a d x d t + b d y d t + c x + d y = f ( t ) \mathrm{a} \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+b \frac{d y}{d t}+\mathrm{c} x+d y=f(t) adtdx+bdtdy+cx+dy=f(t) 的方程组成,那么可以使用求导法消去x或者y,得到的特解的形式是g(x,t)=0,h(y,t)=0
这2种形式就涵盖了常见的方程组,特殊的方程组这里不做讨论
一般来说,对于一个特定的方程组,只能选择其中特定的一种解法,得到的解的形式也是固定的,用另外一种解法是几乎解不出来的,2种形式的特解一般也很难互相转化,除非表达式非常非常简单。
下面举例说明如何解:
解方程
{ 2 d x d t − 4 x + d y d t − y = e y   ( 1 ) d x d t + 3 x + y = 0   ( 2 ) \left\{\begin{array}{l}2 \frac{d x}{d t}-4 x+\frac{d y}{d t}-y=e^{y} \,(1)\\ \frac{d x}{d t}+3 x+y=0\,(2)\end{array}\right. {2dtdx4x+dtdyy=ey(1)dtdx+3x+y=0(2)
这是最新一期网上高数测试的题
很明显是第一种形式, a d x d t + b d y d t + f ( x , y ) = 0 , \quad \mathrm{a} \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+b \frac{d y}{d t}+f(x, y)=0, adtdx+bdtdy+f(x,y)=0, 用消元法首先解出 d x / d t \mathrm{dx} / \mathrm{dt} dx/dt d y / d t , \mathrm{dy} / \mathrm{dt}, dy/dt, d x d t = − 3 x − y , d y d t = e y + 10 x + 3 y \frac{d x}{d t}=-3 x-y, \frac{d y}{d t}=e^{y}+10 x+3 y dtdx=3xy,dtdy=ey+10x+3y
然后两式相除, d y d x = e y + 10 x + 3 y − 3 x − y \frac{d y}{d x}=\frac{e^{y}+10 x+3 y}{-3 x-y} dxdy=3xyey+10x+3y
然后化成全微分方程 ( − 3 x − y ) d y = ( e y + 10 x + 3 y ) d x (-3 \mathrm{x}-y) d y=\left(e^{y}+10 x+3 y\right) d x (3xy)dy=(ey+10x+3y)dx
 即  − e y d x = d ( 5 x 2 + 3 x y + 1 2 y 2 ) \text { 即 }-e^{y} d x=d\left(5 x^{2}+3 x y+\frac{1}{2} y^{2}\right)   eydx=d(5x2+3xy+21y2)
应该是无解的,所以我合理的怀疑应该是打印错了, e y e^{y} ey 应该改成 e x , e^{\mathrm{x}}, ex, 这样的话,
− e x d x = d ( 5 x 2 + 3 x y + 1 2 y 2 ) -e^{x} d x=d\left(5 x^{2}+3 x y+\frac{1}{2} y^{2}\right) exdx=d(5x2+3xy+21y2) 的解为 5 x 2 + 3 x y + 1 2 y 2 + e x = C 5 x^{2}+3 x y+\frac{1}{2} y^{2}+e^{x}=C 5x2+3xy+21y2+ex=C 其中 C C C 为任意常数
然而候选答案不是这样的,候选答案是第二种形式,
所以 e y e^{y} ey 其实应该改成 e t e^{\mathrm{t}} et
{ 2 d x d t − 4 x + d y d t − y = e t   ( 1 ) d x d t + 3 x + y = 0   ( 2 ) \left\{\begin{array}{l}2 \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}-4 \mathrm{x}+\frac{d y}{d t}-y=e^{\mathrm{t}} \,(1) \\ \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+3 \mathrm{x}+y=0\,(2)\end{array}\right. {2dtdx4x+dtdyy=et(1)dtdx+3x+y=0(2)
对 (2) 求导得 d 2 x d t 2 + 3 d x d t + d y d t = 0 \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}+\frac{d y}{d t}=0 dt2d2x+3dtdx+dtdy=0
( 1 ) + ( 2 ) − ( 3 ) (1)+(2)-(3) (1)+(2)(3) d 2 x d t 2 = − x − e t \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{x}-e^{t} dt2d2x=xet
由此解出 x,再根据(2)即可解出 y

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在MATLAB中解二元二阶微分方程可以通过ode45函数实现。首先,需要对原始的二阶微分方程进行变化,转化为一阶微分方程的形式。然后,可以定义一个自定义函数来表示这个一阶微分方程,并使用ode45函数进行求解。 下面是一个示例MATLAB代码: ```matlab function xp=order1(t,x) xp=zeros(2,1); %x1=y,x2=y' xp(1)=x(2); xp(2)=(200*t-0.5*(x(2))^2)/(20*t); end % 定义初始条件 x0 = [0, 0]; % 初始位置和速度 % 定义时间范围 tspan = [0, 10]; % 时间范围从0到10 % 使用ode45函数求解微分方程 [t, x = ode45(@order1, tspan, x0); % 输出结果 disp(['时间:', num2str(t)]); disp(['位置:', num2str(x(:,1))]); disp(['速度:', num2str(x(:,2))]); ``` 这段代码中,函数`order1`表示一阶微分方程,其中`xp`是一阶微分方程的导数函数。在主程序中,我们定义了初始条件`x0`和时间范围`tspan`,然后使用ode45函数求解微分方程。最后,输出求解的时间、位置和速度。 请注意,这只是一个示例代码,具体的二元二阶微分方程需要根据实际问题进行定义和求解。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [MATLAB利用ode求解二阶微分方程](https://blog.csdn.net/NavaJam/article/details/111315037)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Matlab 数与矩阵操作指南](https://download.csdn.net/download/weixin_41784475/88226798)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值