2024数学建模国赛A题思路代码论文分析:板凳龙沿等距螺线盘入二分搜索与动态检测机制

2024高教社杯数学建模竞赛A题B题C题D题E题完整成品文章和全部问题的解题代码完整版本更新如下:https://www.yuque.com/u42168770/qv6z0d/rytbc1nelty1mu4o

摘要:

本研究针对"板凳龙"这一传统民俗文化活动,建立了一系列数学模型来分析和优化其运动过程。研究涵盖了板凳龙的盘入、调头和盘出等不同阶段,涉及到几何学、运动学、优化理论等多个数学领域。通过综合运用多种数学工具和计算方法,我们成功解决了板凳龙运动轨迹规划、碰撞检测、螺距优化、调头路径设计和速度控制等一系列复杂问题,为提高板凳龙表演的观赏性、安全性和技术难度提供了理论基础和实践指导。

问题一中,我们建立了板凳龙沿等距螺线盘入的数学模型。该模型基于等距螺线的参数方程r = kθ,其中k为螺线系数,与螺距相关。我们使用龙格-库塔法求解微分方程dθ/dt = -1/(k√(1+θ^2))来描述龙头运动,并通过递推关系计算龙身和龙尾各部分的位置。速度计算采用数值微分方法。算法实现中,我们使用向量化计算提高效率,采用自适应步长控制保证计算精度。求解结果显示,在300秒的模拟过程中,板凳龙成功完成了多圈盘入运动,龙头保持1 m/s的恒定速度,(结果略),创新点在于我们提出了一种高效的递推算法,能够快速准确地计算长链状结构在复杂曲线上的运动。

问题二中,我们在问题一模型的基础上,引入了动态碰撞检测机制。我们将板凳简化为线段,使用线段相交算法进行碰撞检测。为提高效率,我们采用空间划分技术,仅检查发生碰撞的相邻板凳。算法使用二分搜索精确定位碰撞时刻。求解结果表明,(结果略)。创新点在于我们提出了一种高效的动态碰撞检测算法,能够在复杂的螺旋运动中准确捕捉碰撞时刻。

问题三中,我们构建了一个螺距优化模型。目标函数为最小化螺距,约束条件包括龙头前把手到达调头空间边界和板凳间不发生碰撞。我们使用二分搜索方法寻找最小螺距,每次迭代中模拟板凳龙的运动并进行碰撞检测。为提高计算效率,我们采用并行计算技术。求解结果显示,最小可行螺距约为(结果略)。在这个螺距下,板凳龙能够精确地盘入到调头空间边界,同时避免了板凳之间的碰撞。创新点在于我们将复杂的几何约束问题转化为可求解的优化问题,并提出了一种高效的求解算法。

问题四中,我们设计了一个S形调头曲线优化模型。模型使用两段圆弧参数化表示S形曲线,目标函数为最小化曲线长度,约束条件包括与螺线的切线连续性和调头空间限制。(后续分析略)

问题五中,我们建立了一个动态速度约束优化模型。目标是最大化龙头行进速度,同时确保所有把手的速度不超过2 m/s。我们使用自适应二分搜索算法求解这个问题,(后续分析略)

关键词:板凳龙,数学建模,螺线运动,碰撞检测,路径优化,速度控制,非线性优化

问题重述

以下是对2024数学建模国赛A题题目中各个问题的重述:

问题1:本问题要求建立数学模型,描述舞龙队沿螺距为55 cm的等距螺线顺时针盘入的运动过程。龙头前把手的行进速度恒定为1 m/s,初始位置在螺线第16圈的A点。需要计算从初始时刻到300秒为止,每秒整个舞龙队(包括龙头、龙身和龙尾各前把手及龙尾后把手)的位置和速度。要求将结果保存到指定文件,并在论文中给出特定时间点的数据。

问题2:在问题1的基础上,本问题要求确定舞龙队盘入的终止时刻,即板凳之间即将发生碰撞而无法继续盘入的时间。需要计算并给出此时舞龙队的位置和速度,并将结果保存到指定文件。同时,论文中需要列出特定位置的数据。

问题3:本问题引入了调头空间的概念,即以螺线中心为圆心、直径为9 m的圆形区域。要求确定最小的螺距,使得龙头前把手能够沿着相应的螺线盘入到调头空间的边界,同时保证板凳之间不发生碰撞。

问题4:本问题设定了新的盘入和盘出条件。盘入螺线的螺距为1.7 m,盘出螺线与盘入螺线关于螺线中心呈中心对称。在问题3设定的调头空间内,舞龙队需要完成调头。调头路径是由两段圆弧相切连接而成的S形曲线,其中前一段圆弧的半径是后一段的2倍,且与盘入、盘出螺线均相切。要求探讨是否可以通过调整圆弧来缩短调头曲线,同时保持各部分相切。还需要计算从-100秒到100秒期间每秒舞龙队的位置和速度,并在论文中给出特定时间点的数据。

问题5:基于问题4设定的路径,本问题要求确定龙头的最大行进速度,使得舞龙队各把手的速度均不超过2 m/s。这个问题旨在探索在保证安全的前提下,舞龙队能够达到的最快表演速度。

问题分析

题目整体分析

2024数学建模国赛A题围绕"板凳龙"这一传统民俗文化活动展开,要求建立数学模型来分析和优化板凳龙的运动过程。问题涵盖了板凳龙的盘入、调头和盘出等不同阶段,涉及到几何学、运动学和优化理论等多个数学领域。题目从简单到复杂,逐步深入,要求我们对板凳龙的结构特征、运动规律和性能优化进行全面的分析和建模。

问题一板凳龙等距螺线盘入问题分析

2024数学建模国赛A题问题一要求模拟板凳龙沿等距螺线盘入的过程,并计算其位置和速度。这个问题的核心在于建立板凳龙运动的数学模型。首先需要理解等距螺线的几何特性,建立螺线的参数方程。然后,考虑到板凳龙的结构特征,如龙头、龙身和龙尾的不同长度,以及板凳之间的连接方式,建立板凳龙各部分位置的递推关系。

对于速度的计算,可以利用位置的变化率来求得。这个问题涉及到复杂的几何关系和运动学原理,需要使用数值方法来求解,如龙格-库塔法求解微分方程。同时,考虑到计算的精度和效率,需要采用适当的数值积分方法和插值技术。

在实现过程中,可以考虑使用矩阵运算来提高计算效率,特别是在处理大量数据点时。此外,还需要考虑如何有效地组织和存储计算结果,以便于后续分析和可视化。这个问题为后续问题的解决奠定了基础,需要特别注意模型的准确性和计算的稳定性。

问题二板凳龙盘入碰撞检测问题分析

2024数学建模国赛A题问题二要求确定板凳龙盘入的终止时刻,这本质上是一个碰撞检测问题。这个问题的难点在于如何有效地判断板凳之间是否发生碰撞,以及如何在连续的时间范围内准确定位碰撞发生的时刻。一种思路是将问题一中的模型进行扩展,在每个时间步骤中加入碰撞检测的过程。

碰撞检测可以考虑使用几何算法,如线段相交检测或最近点计算。考虑到板凳龙的螺旋状结构,需要检查每个板凳与多个相邻板凳之间的碰撞性。为了提高计算效率,可以考虑使用空间划分技术,如四叉树或R树,来减少需要检查的板凳对数量。(后续分析略)

问题三最小螺距优化问题分析

2024数学建模国赛A题问题三要求确定最小螺距,使得龙头前把手能够到达调头空间边界,这是一个优化问题。这个问题的关键在于如何建立螺距、盘入深度和调头空间之间的关系模型。一种思路是将问题转化为一个约束优化问题,其中目标函数是最小化螺距,约束条件包括龙头前把手到达调头空间边界以及板凳之间不发生碰撞。(后续分析略)

问题四S形调头曲线及其长度优化问题分析

2024数学建模国赛A题问题四涉及到板凳龙的调头过程,要求设计一个S形调头曲线并优化其长度。这个问题综合了几何设计和路径优化。首先需要建立S形曲线的数学模型,可以考虑使用参数化方法来描述两段圆弧。然后需要确保S形曲线与盘入和盘出螺线的切线连续性,这涉及到复杂的几何约束。优化调头曲线长度是一个非线性优化问题。(后续分析略)。

问题五龙头最大行进速度优化问题分析

问题五要求确定龙头的最大行进速度,同时确保所有把手的速度不超过限制。这是一个复杂的约束优化问题,涉及到动力学分析和速度控制。首先需要基于问题四的路径模型,建立板凳龙各部分速度与龙头速度之间的关系模型。这需要考虑曲线的曲率、板凳之间的连接关系等因素。(后续分析略)

模型假设

问题1-5的模型建立与求解过程中使用了以下模型假设:

  1. 板凳龙被假设为由刚性板凳组成的理想化结构,忽略了板凳弹性形变和振动,这种简化使得模型能够更容易地描述板凳龙的整体运动,但会在某些极端情况下与实际情况产生偏差。

  2. 板凳之间的连接被假设为理想的铰接,允许相邻板凳之间有相对运动但不考虑摩擦和间隙,这种假设简化了板凳龙的运动学分析,但忽略了实际连接中的一些复杂因素。

  3. (其他假设略)

符号说明

以下是2024数学建模国赛A题问题1-问题5的模型建立与求解过程中使用的符号及其说明:(略)

模型的建立与求解

问题一螺线运动模型的建立与求解

螺线运动模型思路分析

针对问题一中舞龙队沿螺距为55 cm的等距螺线顺时针盘入的情况,我们需要建立一个数学模型来描述整个舞龙队的运动过程。首先,我们需要理解等距螺线的特性及其数学表达式,这是描述舞龙队运动轨迹的基础。其次,我们需要考虑舞龙队的物理结构,包括龙头、龙身和龙尾的尺寸以及它们之间的连接方式。最后,我们需要考虑舞龙队的运动特性,特别是龙头前把手的恒定速度对整个系统运动的影响。

基于以上考虑,我们的思路是首先建立一个坐标系统,以螺线的中心为原点,然后使用极坐标方程来描述等距螺线。接着,我们需要将舞龙队的每个部分(龙头、龙身、龙尾)在螺线上的位置表示出来。由于舞龙队是由多个板凳连接而成的,我们可以将每个板凳的前后把手看作是螺线上的两个点,这些点之间的距离是固定的。

在运动分析方面,我们需要考虑龙头前把手的恒定速度如何影响整个系统的运动。由于龙头前把手沿螺线运动,其角速度并不是恒定的,这就需要我们建立一个微分方程来描述角度随时间的变化。解决这个微分方程后,我们就可以得到龙头前把手在任意时刻的位置。

对于龙身和龙尾的运动,我们可以基于龙头的运动和板凳之间的固定距离来逐步计算每个部分的位置。这个过程涉及到复杂的几何关系和非线性方程的求解。

最后,为了获得每个部分的速度,我们需要对位置进行数值微分。考虑到数值计算的稳定性和精度,我们可以采用适当的数值微分方法,如中心差分法。

螺线运动模型建立

基于上述思路分析,我们提出了一个螺线运动模型来描述舞龙队的运动过程。这个模型主要包括以下几个部分:

  1. 等距螺线方程:我们使用极坐标系统来描述等距螺线。设螺线的极坐标方程为 r = k θ r = k\theta r=kθ,其中 r r r 是极径, θ \theta θ 是极角, k k k 是一个常数,与螺距有关。根据题目给出的螺距为55 cm,我们可以计算出 k = 55 2 π k = \frac{55}{2\pi} k=2π55 cm/rad。

  2. 龙头运动方程:由于龙头前把手沿螺线运动,且其线速度恒定为1 m/s,我们可以建立一个微分方程来描述其角度 θ \theta θ 随时间 t t t 的变化:

    d θ d t = − 1 k 1 + θ 2 \frac{d\theta}{dt} = -\frac{1}{k\sqrt{1+\theta^2}} dtdθ=k1+θ2 1

    这个方程的推导基于以下关系:线速度 v v v 等于角速度 d θ d t \frac{d\theta}{dt} dtdθ 乘以到原点的距离 r r r,即 v = r d θ d t v = r\frac{d\theta}{dt} v=rdtdθ。同时, r = k θ r = k\theta r=kθ,所以 v = k θ d θ d t v = k\theta\frac{d\theta}{dt} v=kθdtdθ。考虑到速度方向与半径方向的夹角,我们得到 1 = k 1 + θ 2 ∣ d θ d t ∣ 1 = k\sqrt{1+\theta^2}\left|\frac{d\theta}{dt}\right| 1=k1+θ2 dtdθ ,从而得到上述微分方程。

  3. 龙身和龙尾位置计算:对于龙身和龙尾的每个部分,我们需要求解一个非线性方程来确定其在螺线上的位置。设前一个把手的位置为 ( x 1 , y 1 ) (x_1, y_1) (x1,y1),对应的角度为 θ 1 \theta_1 θ1,我们需要求解下一个把手的角度 θ \theta θ,使得:

    ( k θ cos ⁡ θ − x 1 ) 2 + ( k θ sin ⁡ θ − y 1 ) 2 = d 2 (k\theta\cos\theta - x_1)^2 + (k\theta\sin\theta - y_1)^2 = d^2 (kθcosθx1)2+(kθsinθy1)2=d2

    其中 d d d 是两个把手之间的固定距离。

  4. (后续分析略)

这个螺线运动模型考虑了舞龙队的物理结构和运动特性,能够准确描述舞龙队在等距螺线上的运动过程。通过求解这个模型,我们可以获得舞龙队各个部分在任意时刻的位置和速度信息。

迭代求解算法步骤

为了求解上述螺线运动模型,我们设计了一个迭代求解算法。这个算法主要包括以下步骤:

首先,我们需要初始化系统参数,包括螺距、板凳长度、时间步长等。然后,我们使用数值方法求解龙头运动的微分方程,得到龙头前把手在各个时间点的位置。基于龙头的运动,我们逐步计算龙身和龙尾各个部分的位置。最后,我们使用数值微分方法计算各个部分的速度。

具体来说,算法的主要步骤如下:

  1. 初始化系统参数:设置螺距 l u o j u = 55 luoju = 55 luoju=55 cm,计算螺线系数 k = l u o j u 2 π k = \frac{luoju}{2\pi} k=2πluoju。设置龙头长度 L 1 = 341 L1 = 341 L1=341 cm,龙身和龙尾长度 L 2 = 220 L2 = 220 L2=220 cm。计算龙头把手之间的距离 D 1 = L 1 − 27.5 × 2 D1 = L1 - 27.5 \times 2 D1=L127.5×2 cm,其他凳子把手之间的距离 D 2 = L 2 − 27.5 × 2 D2 = L2 - 27.5 \times 2 D2=L227.5×2 cm。
  2. 设置初始条件:龙头前把手的初始角度 θ 0 = 16 × 2 π \theta_0 = 16 \times 2\pi θ0=16×2π,对应螺线的第16圈。设置时间步长 d t dt dt 和总的模拟时间。
  3. 求解龙头运动微分方程:使用ODE45方法(Runge-Kutta法)求解微分方程 d θ d t = − 1 k 1 + θ 2 \frac{d\theta}{dt} = -\frac{1}{k\sqrt{1+\theta^2}} dtdθ=k1+θ2 1,得到龙头前把手在各个时间点的角度 θ \theta θ
  4. 计算龙头前把手的位置:根据螺线方程,计算龙头前把手在各个时间点的坐标 ( X 1 , Y 1 ) (X_1, Y_1) (X1,Y1):
    X 1 = k θ cos ⁡ θ , Y 1 = k θ sin ⁡ θ X_1 = k\theta\cos\theta, Y_1 = k\theta\sin\theta X1=kθcosθ,Y1=kθsinθ
  5. 计算龙身和龙尾各部分的位置:对于每个时间点,从龙头开始,逐个计算后续各部分的位置。对于第 i i i 个部分,已知前一个部分的位置 ( X i − 1 , Y i − 1 ) (X_{i-1}, Y_{i-1}) (Xi1,Yi1) 和角度 θ i − 1 \theta_{i-1} θi1,求解非线性方程:
    ( k θ i cos ⁡ θ i − X i − 1 ) 2 + ( k θ i sin ⁡ θ i − Y i − 1 ) 2 = d 2 (k\theta_i\cos\theta_i - X_{i-1})^2 + (k\theta_i\sin\theta_i - Y_{i-1})^2 = d^2 (kθicosθiXi1)2+(kθisinθiYi1)2=d2
    其中 d d d D 1 D1 D1 D 2 D2 D2,取决于是龙头还是其他部分。使用fsolve函数求解这个方程,得到 θ i \theta_i θi,然后计算 ( X i , Y i ) (X_i, Y_i) (Xi,Yi)
  6. 计算各部分的速度:使用中心差分法计算速度。(后续分析略)

问题一代码求解

%% 初始化参数
(略)
head_handle_distance = head_length - 0.275*2; % 龙头把手间距 (m)
body_handle_distance = body_length - 0.275*2; % 龙身把手间距 (m)

%% 解算龙头运动
initial_angle = 16*2*pi; % 初始角度
time_step = 0.1; % 时间步长 (s)
total_time = 300; % 总时间 (s)
time_span = 0:time_step:total_time;

angle_derivative = @(t, theta) -1 ./ (k*sqrt(1+theta.^2));
[time, theta] = ode45(angle_derivative, time_span, initial_angle);

%% 计算龙头位置
head_x = k * theta .* cos(theta);
head_y = k * theta .* sin(theta);

%% 计算龙身和龙尾位置
segment_count = 223; % 总段数
(略)
position_x(1,:) = head_x;
position_y(1,:) = head_y;
angle_data(1,:) = theta;

for t = 1:length(time)
    for i = 2:segment_count+1
        handle_distance = (i <= 2) * head_handle_distance + (i > 2) * body_handle_distance;
       (核心代码略)
end

close(progress_bar);

%% 计算速度
velocity = zeros(size(position_x));
(略)
save problem1_tmp_data
%% 数据可视化
load problem1_tmp_data
% 轨迹动画
%%
%% 数据可视化
% 轨迹动画
figure('Name', '舞龙轨迹动画');
set(gcf, 'Position', [100, 100, 800, 800]);  % 设置图窗大小

% 预先计算板凳的宽度(实际物理尺寸,单位:米)
bench_width = 0.3;  % 0.3m

% 计算整个运动范围
max_x = max(position_x(:));
min_x = min(position_x(:));
max_y = max(position_y(:));
min_y = min(position_y(:));
range = max(max_x - min_x, max_y - min_y);

for t = 1:20:length(time)
    cla;  % 清除当前轴
    hold on;
    
    % 绘制螺线参考
    theta_ref = linspace(0, initial_angle, 1000);
    r_ref = k * theta_ref;
    plot(r_ref.*cos(theta_ref), r_ref.*sin(theta_ref), 'k--', 'LineWidth', 0.5);
    
    % 绘制板凳和把手
    for i = 1:segment_count
        if isnan(position_x(i,t)) || isnan(position_y(i,t))
            break;
        end
        
        % 计算板凳的方向角
        (略)
        
        % 计算板凳的长度和把手距离
        if i == 1
            bench_length = head_length;
            handle_distance = head_handle_distance;
        else
            bench_length = body_length;
            handle_distance = body_handle_distance;
        end
        
        % 计算把手位置
         (略)
        
        % 计算板凳的四个角点
        (略)
        
        % 绘制板凳
        if i == 1
            fill(corners(:,1), corners(:,2), 'r', 'EdgeColor', 'k');  % 龙头用红色
        else
            fill(corners(:,1), corners(:,2), 'y', 'EdgeColor', 'k');  % 龙身用黄色
        end
        
        % 绘制把手
        plot([handle_front(1), handle_back(1)], [handle_front(2), handle_back(2)], 'k-', 'LineWidth', 2);
        plot(handle_front(1), handle_front(2), 'ko', 'MarkerFaceColor', 'k', 'MarkerSize', 4);
        plot(handle_back(1), handle_back(2), 'ko', 'MarkerFaceColor', 'k', 'MarkerSize', 4);
    end
    
    axis equal;
    xlim([min_x - range*0.1, max_x + range*0.1]);
    ylim([min_y - range*0.1, max_y + range*0.1]);
    title(sprintf('时间: %.2f s', time(t)));
    
    hold off;
    drawnow;
    
    % 保存每一帧
    frame = getframe(gcf);
    im = frame2im(frame);
    [imind,cm] = rgb2ind(im,256);
    if t == 1
        imwrite(imind,cm,'dragon_dance_animation.gif','gif', 'Loopcount',inf,'DelayTime',0.1);
    else
        imwrite(imind,cm,'dragon_dance_animation.gif','gif','WriteMode','append','DelayTime',0.1);
    end
end
%%
% 位置随时间变化
figure('Name', '位置随时间变化');
plot(time, position_x([1,2,52,102,152,202,end],:));
xlabel('时间 (s)'); ylabel('X 坐标 (m)');
title('X 坐标随时间变化');
legend('龙头', '第1节', '第51节', '第101节', '第151节', '第201节', '龙尾');
saveas(gcf, 'position_x_vs_time.png');

figure('Name', '位置随时间变化');
plot(time, position_y([1,2,52,102,152,202,end],:));
xlabel('时间 (s)'); ylabel('Y 坐标 (m)');
title('Y 坐标随时间变化');
legend('龙头', '第1节', '第51节', '第101节', '第151节', '第201节', '龙尾');
saveas(gcf, 'position_y_vs_time.png');

% 速度随时间变化
figure('Name', '速度随时间变化');
plot(time, velocity([1,2,52,102,152,202,end],:));
xlabel('时间 (s)'); ylabel('速度 (m/s)');
title('速度随时间变化');
legend('龙头', '第1节', '第51节', '第101节', '第151节', '第201节', '龙尾');
saveas(gcf, 'velocity_vs_time.png');

% 角速度分析
angular_velocity = -1 ./ (k*sqrt(1+theta.^2));
figure('Name', '角速度分析');
plot(time, angular_velocity);
xlabel('时间 (s)'); ylabel('角速度 (rad/s)');
title('龙头角速度随时间变化');
saveas(gcf, 'angular_velocity_vs_time.png');
 (略)


问题一模型求解结果可视化与分析

在完成模型求解后,我们对结果进行了可视化和分析,以更好地理解舞龙队的运动特性。我们主要关注以下几个方面:

运动轨迹可视化:我们绘制了舞龙队在300秒内的运动轨迹。从图中可以清楚地看到,舞龙队沿着等距螺线顺时针盘入。龙头的轨迹形成了最外层的螺线,而龙身和龙尾的轨迹则逐渐向内收缩。这个可视化结果直观地展示了舞龙队的运动过程,验证了我们模型的正确性。
在这里插入图片描述

位置随时间的变化:我们选取了龙头前把手、龙头后面第1、51、101、151、201节龙身前把手和龙尾后把手这几个代表性位置,绘制了它们的x坐标和y坐标随时间的变化曲线。从这些曲线中,我们可以观察到以下特点:(分析过程略)

在这里插入图片描述

通过这些可视化和分析,我们不仅验证了模型的正确性,还深入理解了舞龙队运动的物理特性。我们发现,虽然舞龙队的整体运动看似复杂,但它遵循着明确的物理规律。龙头的恒定速度运动通过复杂的几何关系传递到整个舞龙队,产生了丰富的动态特性。(分析过程略)

其他可视化略,见完整版

问题二动态碰撞检测问题模型的建立与求解

动态碰撞检测问题思路分析

问题二要求我们确定舞龙队盘入的终止时刻,使得板凳之间不发生碰撞。这个问题本质上是一个动态碰撞检测问题,需要我们在问题一的基础上进行扩展。我们需要在每个时间步骤中不仅计算舞龙队各部分的位置,还要检查是否发生碰撞。这个问题的复杂性主要体现在以下几个方面:

首先,舞龙队的运动是一个连续的过程,但我们的模拟是离散的。这意味着我们需要选择适当的时间步长,既要保证计算效率,又要保证不会错过碰撞事件。其次,舞龙队由223个板凳组成,每个板凳都与其他板凳发生碰撞,这导致了巨大的计算量。再者,板凳的形状是矩形,而不是简单的点,这增加了碰撞检测的复杂性。最后,由于舞龙队是沿着螺线运动的,相邻圈之间的板凳也发生碰撞,这要求我们的碰撞检测算法必须考虑到非相邻板凳之间的碰撞。

考虑到这些复杂性,我们的思路是在问题一的模型基础上,添加一个高效的碰撞检测机制。我们将从头把手开始,逐步计算每个板凳的位置,并在每一步检查该板凳是否与已经确定位置的板凳发生碰撞。一旦检测到碰撞,我们就认为已经达到了盘入的终止时刻。

动态碰撞检测模型建立

基于上述思路,我们提出一个动态碰撞检测模型来解决问题二。这个模型主要包括以下几个部分:

  1. 螺线运动模型:这部分与问题一相同,用于描述舞龙队各部分在螺线上的运动。其核心是等距螺线方程 r = k θ r = k\theta r=kθ,以及描述龙头运动的微分方程 d θ d t = − 1 k 1 + θ 2 \frac{d\theta}{dt} = -\frac{1}{k\sqrt{1+\theta^2}} dtdθ=k1+θ2 1

  2. 板凳位置计算:对于每个板凳,我们需要计算其两个把手的位置。前把手的位置直接由螺线方程给出,后把手的位置需要解非线性方程:(过程略)

  3. 碰撞检测机制:这是本模型的核心部分。我们需要检查每个新计算的板凳是否与之前的板凳发生碰撞。考虑到舞龙队的螺旋结构,我们不仅需要检查相邻板凳之间的碰撞,还需要检查与外层相邻的板凳之间的碰撞。

  4. (后略,见完整版本)

迭代碰撞检测算法步骤

为了实现上述动态碰撞检测模型,我们设计了一个迭代碰撞检测算法。这个算法的主要步骤如下:

首先,我们初始化系统参数,包括螺距、板凳长度、把手距离等。然后,我们从问题一的终止状态开始,逐步向前推算舞龙队的位置。在每一个时间步骤中,我们计算每个板凳的位置,并进行碰撞检测。如果检测到碰撞,我们就停止计算,并记录当前的时间和所有板凳的位置和速度信息。

具体来说,算法的主要步骤如下:

  1. 初始化参数:设置螺距 l u o j u = 55 luoju = 55 luoju=55 cm,计算螺线系数 k = l u o j u 2 π k = \frac{luoju}{2\pi} k=2πluoju。设置龙头长度 L 1 = 341 L1 = 341 L1=341 cm,龙身和龙尾长度 L 2 = 220 L2 = 220 L2=220 cm。计算龙头把手之间的距离 D 1 = L 1 − 27.5 × 2 D1 = L1 - 27.5 \times 2 D1=L127.5×2 cm,其他凳子把手之间的距离 D 2 = L 2 − 27.5 × 2 D2 = L2 - 27.5 \times 2 D2=L227.5×2 cm。

  2. 设置初始条件:从问题一的终止状态开始,设置初始角度 θ 0 \theta_0 θ0,时间步长 d t dt dt,初始化标志变量 f l a g = 0 flag = 0 flag=0(表示未发生碰撞)。

  3. 迭代计算:while循环,当 f l a g = 0 flag = 0 flag=0 时继续计算。
    a) 更新时间步: s t e p = s t e p + 1 step = step + 1 step=step+1
    b) 更新位置数据:将上一时间步的末尾数据作为本时间步的起始数据
    c) (后略)

问题二模型的求解

基于上述建立的动态碰撞检测模型和设计的迭代碰撞检测算法,我们可以对问题二进行求解。求解过程主要包括以下几个关键步骤:

首先,我们需要初始化系统参数。根据题目给出的信息,我们设置螺距 l u o j u = 55 luoju = 55 luoju=55 cm,计算螺线系数 k = l u o j u 2 π k = \frac{luoju}{2\pi} k=2πluoju。龙头长度 L 1 = 341 L1 = 341 L1=341 cm,龙身和龙尾长度 L 2 = 220 L2 = 220 L2=220 cm。龙头把手之间的距离 D 1 = L 1 − 27.5 × 2 D1 = L1 - 27.5 \times 2 D1=L127.5×2 cm,其他凳子把手之间的距离 D 2 = L 2 − 27.5 × 2 D2 = L2 - 27.5 \times 2 D2=L227.5×2 cm。我们从问题一的终止状态开始,设置初始角度 θ 0 \theta_0 θ0 为问题一结束时龙头前把手的角度值。

(中间过程略)

在计算出每个板凳的位置后,我们需要进行碰撞检测。这是问题二的核心部分,也是与问题一最大的区别。对于每个新计算出位置的板凳,我们需要检查它是否与之前的板凳发生碰撞。具体来说,我们需要执行以下步骤:(略)

问题二模型求解结果可视化与分析

在完成模型求解后,我们对结果进行了可视化和分析,以更好地理解舞龙队盘入的过程和终止时刻的特征。我们主要关注以下几个方面:

盘入过程可视化:我们绘制了舞龙队从问题一结束到盘入终止时刻的整个过程。这个动画清楚地展示了舞龙队是如何逐渐向中心盘入的,以及在哪个时刻、哪个位置发生了碰撞。这个可视化结果不仅验证了我们模型的正确性,还直观地展示了舞龙队盘入的极限情况。
在这里插入图片描述

终止时刻的构型:我们特别关注了盘入终止时刻舞龙队的空间构型。通过分析这个构型,我们可以了解舞龙队能够盘入的最紧密状态,这对于优化舞龙表演和设计更复杂的盘入方案有重要意义。

问题三螺距迭代优化模型的建立与求解

螺距迭代优化模型思路分析

问题三要求我们确定最小螺距,使得龙头前把手能够沿着相应的螺线盘入到调头空间的边界。这个问题本质上是在寻找一个平衡点,即螺距既要足够小以允许舞龙队尽深入地盘入,又要足够大以避免板凳之间的碰撞。我们需要考虑的关键因素包括螺线的几何特性、舞龙队的物理结构以及调头空间的限制。

首先,我们需要理解螺距与螺线几何特性之间的关系。螺距决定了螺线的"紧密程度",较小的螺距会导致螺线更加紧密,这允许舞龙队盘入更深,但同时也增加了板凳之间碰撞的风险。其次,我们需要考虑舞龙队的物理结构,包括龙头、龙身和龙尾的尺寸以及它们之间的连接方式。最后,调头空间的直径为9米的限制为我们提供了一个明确的边界条件。

基于以上考虑,我们的思路是建立一个数值模型,通过迭代的方式逐步调整螺距,同时模拟舞龙队的盘入过程。在每次迭代中,我们需要检查两个关键条件:一是龙头前把手是否能到达调头空间边界,二是在盘入过程中是否发生板凳之间的碰撞。我们的目标是找到满足这两个条件的最小螺距。(后略,见完整版本)

要使用MATLAB实现这个舞龙队运动模拟,我们首先需要理解螺线的参数方程以及如何根据时间推算出舞龙队的位置和速度。 螺线(Archimedean spiral)的一般方程是: \[ r = a + b\theta \] 其中 \( r \) 是从原点到曲线上点的距离,\( \theta \) 是该点的角度,\( a \) 是螺线的起始半径,\( b \) 是螺距参数。 对于等距螺线,\( a \) 和 \( b \) 的值决定了螺线的形状。在这个问中,螺距为 55 cm,这意味着每转动 360 度,半径增加 55 cm。我们可以将这个螺距转换为角度的函数,然后用这个函数来描述螺线的方程。 我们可以使用极坐标系中的参数方程来表示舞龙队的位置: \[ x = r \cos(\theta) \] \[ y = r \sin(\theta) \] 在MATLAB中,我们可以编写一个脚本来计算每秒的位置和速度。下面是一个可能的实现方式: ```matlab % 定义螺线参数 a = 0; % 起始半径,根据目情况这里假设为0 b = 55 / (2*pi); % 螺距和2π的比值,单位是cm/弧度 v_head = 100; % 头部前进速度,单位是cm/s % 定义时间参数 t_end = 300; % 总时间300秒 dt = 1; % 每秒计算一次位置和速度 % 初始化位置数组和速度数组 position_x = zeros(1, t_end/dt); position_y = zeros(1, t_end/dt); velocity_x = zeros(1, t_end/dt); velocity_y = zeros(1, t_end/dt); % 初始条件 theta = 0; % 螺线的角度从0开始 r = 16 * (2 * pi * b); % 初始半径,乘以16圈和2π来计算初始半径 % 计算每秒的位置和速度 for t = 1:dt:t_end position_x(t/dt) = r * cos(theta); position_y(t/dt) = r * sin(theta); % 计算速度 dr = b * dt; % 由于速度是恒定的,所以r的变化是恒定的 dtheta = v_head / r; % 角速度是速度除以半径 velocity_x(t/dt) = dr * cos(theta) - r * sin(theta) * dtheta; velocity_y(t/dt) = dr * sin(theta) + r * cos(theta) * dtheta; % 更新theta和r theta = theta + dtheta; r = r + dr; end % 输出结果 for t = 1:dt:t_end fprintf('Time: %d s, X: %f cm, Y: %f cm, Velocity X: %f cm/s, Velocity Y: %f cm/s\n', ... t, position_x(t/dt), position_y(t/dt), velocity_x(t/dt), velocity_y(t/dt)); end ``` 这段代码首先初始化位置和速度数组,然后通过一个循环来计算每秒的位置和速度。请注意,这里的实现假定了速度恒定且只有径向的变化,而实际上,舞龙队运动可能需要考虑更多的物理因素,例如舞龙队的长度、舞龙队成员之间的相对位置等因素,这里没有考虑这些因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值