【手把手教你】Python实现基于事件驱动的量化回测

01

引言

手把手教你用Python搭建自己的量化回测框架【均值回归策略】 是使用矢量化方法(pandas)建立的基于研究的量化回测框架,不考虑交易的委托成交行为,与真实市场情况差距比较大。今天为大家介绍的是基于事件驱动的回测框架,这是一种十分复杂的回测系统,力图模拟实盘交易,搭建一种仿真的回测环境。

与矢量化方法相比,事件驱动的系统具有许多优点,一是事件驱动回测可以用于历史回测和实时交易,而矢量化的回测必须一次获得所有数据才能进行统计分析;二是使用事件驱动的回测不会出现前瞻性偏见,因为将市场数据接收视为“事件”,可以用市场数据“滴灌”来复制订单管理和投资组合系统的行为方式;三是事件驱动的回测允许对如何执行订单和产生交易成本进行定制。由于可以构建自定义交易处理程序,因此可以轻松处理基本的市场和限价订单。

尽管事件驱动的回测系统具有许多优点,但与简单的矢量化系统相比,两大缺点也比较突出:一是实施和测试要复杂得多,有更多的“活动组建”(模块),导致引入错误的机会更大;二是执行速度较慢,进行数学计算时,无法利用最佳的矢量化运算。下面仍然与均值回归交易策略为例,为大家展示Python基于事件驱动回测框架的构建思路,回测代码主要参考了《Mastering Python for Finance》Chapter 9 Backtesting,对市场数据获取使用了tushare作为替代,公众号后台回复"finance"可获取本书的电子书(英文版)。

02

回测框架与Python代码

基于事件驱动的回测框架一般包括以下几个模块,(1)数据采集,数据采集模块通过接口获取行情数据和历史数据(这里使用tushare),产生市场数据事件。(2)事件模块,一般是设定一个事件基类,然后在事件的基类下面生成很多子事件,如市场数据事件、交易信号事件、委托下单事件和订单成交事件等。(3)策略模块,一般先设定一个策略基类,然后通过基类衍生很多子策略,该模块通过输入数据,生成交易信号(signal),即产生信号事件。(4)交易执行模块,接收信号事件,确定需要开仓和平仓的头寸数量,输出委托下单事件,根据委托下单事件进行模拟或者真实的交易,当订单成交事件完成时更新持有资产头寸以及其他相关数据。(5)资产头寸,记录资金、仓位、仓位市值等信息。最后,所有事件通过事件队列进行管理,当一个事件完成后,由下一个事件开始任务,不断循环。

Python基于事件驱动的回测系统主要使用面向对象(class)来编写,因此需要对类的基础要求比较高,关于Python的面向对象编程可以参考推文:【手把手教你】Python面向对象编程入门及股票数据管理应用实例

#先引入后面可能用到的包(package)
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline   
#正常显示画图时出现的中文和负号
from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False

将每一个时间戳(timestamp)内的数据作为输入参数,构建类TickData。

class TickData:
    def __init__(self, symbol, timestamp,last_price=0, total_volume=0):
        self.symbol = symbol
        self.timestamp = timestamp
        self.open_price = 0
        self.last_price = last_price
        self.total_volume = total_volume

根据数据要求,生成市场数据事件,这里主要获取收盘价、开盘价、成交量和时间戳。

class MarketData:
    def __init__(self):
        self.__recent_ticks__ = dict()
    def add_last_price(self, time, symbol, price, volume):
        tick_data = TickData(symbol, time, price, volume)
        self.__recent_ticks__[symbol] = tick_data
    def add_open_price(self, time, symbol, price):
        tick_data = self.get_existing_tick_data(symbol, time)
        tick_data.open_price = price
    def get_existing_tick_data(self, symbol, time):
        if not symbol in self.__recent_ticks__:
            tick_data = TickData(symbol, time)
            self.__recent_ticks__[symbol] = tick_data
        return self.__recent_ticks__[symbol]
    def get_last_price(self, symbol):
        return self.__recent_ticks__[symbol].last_price
    def get_open_price(self, symbol):
        return self.__recent_ticks__[symbol].open_price
    def get_timestamp(self, symbol):
        return self.__recent_ticks__[symbol].timestamp

获取市场数据并搭建市场模拟交易的状态

#获取数据
import tushare as ts
class MarketDataSource:
    def __init__(self):
        self.event_tick = None
        self.ticker = None
        self.autype='qfq'
        self.start, self.end = None, None
        self.md = MarketData()
    def start_market_simulation(self):
        data = ts.get_k_data(self.ticker,autype=self.autype,
                         start=self.start, end=self.end)
        data.index=pd.to_datetime(data.date)
        data=data.sort_index()
        for time, row in data.iterrows():
            self.md.add_last_price(time, self.ticker,
                                   row["close"], row["volume"])
            self.md.add_open_price(time, self.ticker, row["open"])
            if not self.event_tick is None:
                self.event_tick(self.md)

交易指令和头寸管理。

class Order:
    def __init__(self, timestamp, symbol, qty, is_buy,
                 is_market_order, price=0):
        self.timestamp = timestamp
        self.symbol = symbol
        self.qty = qty
        self.price = price
        self.is_buy = is_buy
        self.is_market_order = is_market_order
        self.is_filled = False
        self.filled_price = 0
        self.filled_time = None
        self.filled_qty = 0
class Position:
    def __init__(self):
        self.symbol = None
        self.buys, self.sells, self.net = 0, 0, 0
        self.realized_pnl = 0
        self.unrealized_pnl = 0
        self.position_value = 0
    def event_fill(self, timestamp, is_buy, qty, price):
        if is_buy:
            self.buys += qty
        else:
            self.sells += qty
        self.net = self.buys - self.sells
        changed_value = qty * price * (-1 if is_buy else 1)
        self.position_value += changed_value
        if self.net == 0:
            self.realized_pnl = self.position_value
    def update_unrealized_pnl(self, price):
        if self.net == 0:
            self.unrealized_pnl = 0
        else:
            self.unrealized_pnl = price * self.net + self.position_value
        return self.unrealized_pnl

策略的基类,其他策略都基于该策略进行编写。
class Strategy:
    def __init__(self):
        self.event_sendorder = None
    def event_tick(self, market_data):
        pass
    def event_order(self, order):
        pass
    def event_position(self, positions):
        pass
    def send_market_order(self, symbol, qty, is_buy, timestamp):
        if not self.event_sendorder is None:
            order = Order(timestamp, symbol, qty, is_buy, True)
            self.event_sendorder(order)

下面以均值回归模型为例进行回测,关于均值回归模型更详细的内容可参考推文:手把手教你用Python搭建自己的量化回测框架【均值回归策略】 

class MeanRevertingStrategy(Strategy):
    def __init__(self, symbol,
                 lookback_intervals=20,
                 buy_threshold=-1.5,
                 sell_threshold=1.5):
        Strategy.__init__(self)
        self.symbol = symbol
        self.lookback_intervals = lookback_intervals
        self.buy_threshold = buy_threshold
        self.sell_threshold = sell_threshold
        self.prices = pd.DataFrame()
        self.is_long, self.is_short = False, False
    def event_position(self, positions):
        if self.symbol in positions:
            position = positions[self.symbol]
            self.is_long = True if position.net > 0 else False
            self.is_short = True if position.net < 0 else False
    def event_tick(self, market_data):
        self.store_prices(market_data)
        if len(self.prices) < self.lookback_intervals:
            return
        signal_value = self.calculate_z_score()
        timestamp = market_data.get_timestamp(self.symbol)
        if signal_value < self.buy_threshold:
            self.on_buy_signal(timestamp)
        elif signal_value > self.sell_threshold:
            self.on_sell_signal(timestamp)
    def store_prices(self, market_data):
        timestamp = market_data.get_timestamp(self.symbol)
        self.prices.loc[timestamp, "close"] = \
            market_data.get_last_price(self.symbol)
        self.prices.loc[timestamp, "open"] = \
            market_data.get_open_price(self.symbol)
    def calculate_z_score(self):
        self.prices = self.prices[-self.lookback_intervals:]
        returns = self.prices["close"].pct_change().dropna()
        z_score = ((returns-returns.mean())/returns.std())[-1]
        return z_score
    def on_buy_signal(self, timestamp):
        if not self.is_long:
            self.send_market_order(self.symbol, 100,
                                   True, timestamp)
    def on_sell_signal(self, timestamp):
        if not self.is_short:
            self.send_market_order(self.symbol, 100,
                                   False, timestamp)

最后定义一个回测类,将上述模块串联到一起。回测系统中只是对策略交易的已实现收益(未实现收益)进行回测,并未加入收益率、夏普比率、最大回撤等策略评价指标,关于这方面内容可以参考手把手教你用Python搭建自己的量化回测框架【均值回归策略】 

import datetime as dt
import pandas as pd
class Backtester:
    def __init__(self, symbol, start_date, end_date):
        self.target_symbol = symbol
        self.start_dt = start_date
        self.end_dt = end_date
        self.strategy = None
        self.unfilled_orders = []
        self.positions = dict()
        self.current_prices = None
        self.rpnl, self.upnl = pd.DataFrame(), pd.DataFrame()
    def get_timestamp(self):
        return self.current_prices.get_timestamp(self.target_symbol)
    def get_trade_date(self):
        timestamp = self.get_timestamp()
        return timestamp.strftime("%Y-%m-%d")
    def update_filled_position(self, symbol, qty, is_buy,price, timestamp):
        position = self.get_position(symbol)
        position.event_fill(timestamp, is_buy, qty, price)
        self.strategy.event_position(self.positions)
        self.rpnl.loc[timestamp, "rpnl"] = position.realized_pnl
        print (self.get_trade_date(), \
            "成交:", "买入" if is_buy else "卖出", \
            qty, symbol, "价格", price)
    def get_position(self, symbol):
        if symbol not in self.positions:
            position = Position()
            position.symbol = symbol
            self.positions[symbol] = position
        return self.positions[symbol]
    def evthandler_order(self, order):
        self.unfilled_orders.append(order)
        print (self.get_trade_date(), \
            "收到指令:", \
            "买入" if order.is_buy else "卖出", order.qty, \
             order.symbol)
    def match_order_book(self, prices):
        if len(self.unfilled_orders) > 0:
            self.unfilled_orders = \
                [order for order in self.unfilled_orders
                 if self.is_order_unmatched(order, prices)]
    def is_order_unmatched(self, order, prices):
        symbol = order.symbol
        timestamp = prices.get_timestamp(symbol)
        if order.is_market_order and timestamp > order.timestamp:
            # Order is matched and filled.
            order.is_filled = True
            open_price = prices.get_open_price(symbol)
            order.filled_timestamp = timestamp
            order.filled_price = open_price
            self.update_filled_position(symbol,
                                        order.qty,
                                        order.is_buy,
                                        open_price,
                                        timestamp)
            self.strategy.event_order(order)
            return False
        return True
    def evthandler_tick(self, prices):
        self.current_prices = prices
        self.strategy.event_tick(prices)
        self.match_order_book(prices)
    def start_backtest(self):
        self.strategy = MeanRevertingStrategy(self.target_symbol)
        self.strategy.event_sendorder = self.evthandler_order
        mds = MarketDataSource()
        mds.event_tick = self.evthandler_tick
        mds.ticker = self.target_symbol
        mds.start, mds.end = self.start_dt, self.end_dt
        print ("Backtesting started...")
        mds.start_market_simulation()
        print ("Completed.")

开始回测

backtester = Backtester("600000",'20180101','20200323')
backtester.start_backtest()

Backtesting started...
2019-01-31 收到指令: 卖出 100 600000
2019-02-01 成交: 卖出 100 600000 价格 10.82
2019-02-15 收到指令: 买入 100 600000
2019-02-18 成交: 买入 100 600000 价格 10.75
......
2020-03-09 收到指令: 买入 100 600000
2020-03-10 成交: 买入 100 600000 价格 10.71
Completed.

backtester.rpnl.plot(figsize=(16,6))
plt.show()

策略已实现收益:

03

结语

本文以均值回归模型为例,展示了基于事件驱动回测系统的Python实现过程。当然,上述回测系统仍然是一个简化版的系统,还存在很多需要完善的地方,比如没有加入关于策略的量化评价指标和可视化模块,没有考虑交易手续费等,这些都留待读者自己去思考和进一步完善。现实的市场交易比回测系统要复杂更多,因此回测系统再怎么完美也很难完全复现真实交易的场景。量化回测是量化交易的重要组成部分,回测系统的好坏会直接影响对策略的评估。目前很多量化平台和Python量化回测开源框架都提供了相应的回测系统,大家也没必要都自己去重新造轮子,但是对于Python基础比较扎实,从事个人量化交易的来说,了解回测系统的运作过程,构建自己的量化交易系统还是很有必要的。后续推文将会介绍Python量化回测开源框架的应用。

参考资料:Weiming J M, Weiming J M. Mastering Python for Finance[M]. 2015.

关于Python金融量化

专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取量化投资视频资料、量化金融相关PDF资料、公众号文章Python完整源码、量化投资前沿分析框架,与博主直接交流、结识圈内朋友等。

发布了12 篇原创文章 · 获赞 6 · 访问量 9246
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览