RAG( Retrieval Augmented Generation),是一种将预训练大型语言模型功能与外部数据源相结合的技术。这种方法结合了LLM(如GPT-3或GPT-4)的生成能力和业务数据搜索机制,从而提供更准确、更符合业务要求的系统响应。本文概要探讨检索增强生成,给出详细步骤说明,以帮助您更好了解LLM实践应用。
RAG核心流程
关于LLM的优缺点请参考上篇博文,这里直接进入主题。了解RAG基本原理后,下面详细介绍搭建这个框架的步骤。
1. 数据收集
首先收集所有实际应用的业务数据。通常包括产品手册、开发文档、业务流程规范、FAQ(常见问题)等。
2. 数据分块
数据分块是将数据分解成更小、更易于管理的片段。例如一份长达100页的用户手册,您可以将其分成不同的部分,每个部分可能回答不同的用户问题。
这样每个数据块都集中在一个特定的主题上。当从源数据集中检索到一条信息时,它更有可能直接适用于用户的查询,因为我们避免了包括来自整个文档的不相关信息。同时也提高了效率,因为系统可以快速获取最相关的信息,而不是处理整个文档。
3. 嵌入向量模型
现在源数据已经被分解成更小的片段,需要将其转换为向量表示。这涉及需要选择相应模型将文本数据转换为嵌入向量,嵌入向量是捕获文本背后语义的数字表示。简而言之,文档嵌入向量允许系统理解用户查询