大模型进阶应用——检索增强生成

RAG( Retrieval Augmented Generation),是一种将预训练大型语言模型功能与外部数据源相结合的技术。这种方法结合了LLM(如GPT-3或GPT-4)的生成能力和业务数据搜索机制,从而提供更准确、更符合业务要求的系统响应。本文概要探讨检索增强生成,给出详细步骤说明,以帮助您更好了解LLM实践应用。

RAG核心流程

关于LLM的优缺点请参考上篇博文,这里直接进入主题。了解RAG基本原理后,下面详细介绍搭建这个框架的步骤。
在这里插入图片描述

1. 数据收集

首先收集所有实际应用的业务数据。通常包括产品手册、开发文档、业务流程规范、FAQ(常见问题)等。

2. 数据分块

数据分块是将数据分解成更小、更易于管理的片段。例如一份长达100页的用户手册,您可以将其分成不同的部分,每个部分可能回答不同的用户问题。

这样每个数据块都集中在一个特定的主题上。当从源数据集中检索到一条信息时,它更有可能直接适用于用户的查询,因为我们避免了包括来自整个文档的不相关信息。同时也提高了效率,因为系统可以快速获取最相关的信息,而不是处理整个文档。

3. 嵌入向量模型

现在源数据已经被分解成更小的片段,需要将其转换为向量表示。这涉及需要选择相应模型将文本数据转换为嵌入向量,嵌入向量是捕获文本背后语义的数字表示。简而言之,文档嵌入向量允许系统理解用户查询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值