Pathformer做时间序列

超越Transformer,Pathformer等方法在时间序列预测中展现出新思路,关注数据输入形式,利用patch转换复杂时序数据,提升模型性能。文中提到了多篇相关论文,包括时间序列的多尺度建模、补丁重建任务、分解MLP-Mixer等,旨在为时间序列预测提供新视角和创新机会。
摘要由CSDN通过智能技术生成

超越Transformer!时间序列预测新方法,霸榜AI顶会

超越Transformer,霸榜AI顶会,patch做时间序列预测成为新烫门,强烈推荐想发论文的伙伴多关注!

具体看,以往的时间序列预测创新着眼改模型,越来越卷,难度越来越大,而基于patch的方式,主要关注数据的输入形式,这是一个新思路,目前还在蓬勃发展中,创新机会多!而且patch的方式能够把各种复杂时序数据,转换成深度学习模型能处理的方式,在多变量预测等方面,独具优势,对提高模型性能等也很有帮助。

为了能够帮大家获取更多灵感启发,本次给大家挑选了10个基于Patch的时序预测改进思路,且提供了源码,方便大家改模型。

论文题目:《PATHFORMER: MULTI-SCALE TRANSFORMERS WITH ADAPTIVE PATHWAYS FOR TIME SERIES FORECASTING》

论文简述:基于变压器的模型在时间序列预测中取得了一定的成功。现有的方法主要是从有限或固定的尺度上对时间序列进行建模,很难捕捉到不同尺度上的不同特征。本文提出了一种具有自适应路径的多尺度变压器(Pathformer)。本文提出的Transformer集成了时间分辨率和时间距离,用于多尺度建模。多尺度分割利用不同大小的补丁将时间序列划分为不同的时间分辨率。基于每个尺度的划分,对这些补丁进行双重关注,以捕获全局相关性和局部细节作为时间依赖性。作者进一步丰富了多尺度变压器的自适应路径,该路径根据输入时间序列中变化的时间动态自适应调

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值