时序必读论文09|ICLR24基于Transformer 自适应多尺度patch的时序预测模型

前言

这篇文章的思路就是:通过傅立叶变化,把时序数据自适应切分为最佳的、不同尺度的patch,然后设计patch内和patch间的注意力机制,进行下游任务。思路非常清晰简洁。

关于自适应尺度这样的学术词汇,我想通过举例子其实非常容易理解。以电影举例,有的电影情节冗长拖沓,我们就会快进,看电影的粒度和尺度就会更宽。而有的电影情节紧凑,我们会慢慢欣赏,看电影的粒度和尺度就很精细。自适应的意思就是根据电影情节密度自动帮你计算合适的快进步长。

图片

如上图就是一个例子,左图:时间序列被划分为具有不同尺度的patch,作为时间分辨率。蓝色、橙色和红色的间隔代表不同的patch大小。右图:通过不同的时间距离建模局部细节(黑色箭头)和全局相关性(彩色箭头)。

本文工作

论文提出Pathformer模型,它整合了时序的resolution和distance,能够根据输入时间序列中不同的时序,动态调整多尺度建模过程,自适应的用不同尺度的patch分解时间序列。并在patch内和patch间设计了注意力机制,以捕获全局和局部的依赖关系,用于时间序列预测。提高了预测准确性和泛化性。对九个真实世界数据集的实验结果表明,Pathformer优于现有模型,展现出更强的泛化能力。

### 关于时序预测的研究成果 在ICLR 2024会议上,关于时序预测的研究涵盖了多个方面,包括但不限于模型架构创新、数据处理技术以及应用领域扩展。这些研究不仅推动了理论发展,也为实际应用场景提供了新的解决方案。 #### 模型架构创新 一些研究人员提出了基于Transformer的新变体来改进长期依赖捕捉能力。通过引入局部性和全局性的混合注意力机制,这类模型能够在保持计算效率的同时显著提升预测精度[^1]。 #### 数据处理技术 针对时间序列中存在的噪声问题,有学者开发了一种自适应滤波算法,该方法可以根据不同时间段的数据特性自动调整参数设置,从而有效减少异常值的影响并提高模型鲁棒性。 #### 应用领域拓展 除了传统金融和气象预报等领域外,时序预测还被应用于医疗健康监测系统中。例如,利用可穿戴设备收集的心率、血压等生理信号构建个性化疾病预警平台成为了一个热门话题。此类项目旨在通过对个体历史数据的学习实现对未来状态变化趋势的精准预判,进而辅助医生做出更及时有效的诊疗决策。 ```python import numpy as np from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 假设我们有一个时间序列数据集X和对应的标签y X = np.random.rand(1000, 50) # 示例输入特征矩阵 (样本数, 时间步长) y = np.random.randint(0, 2, size=(1000)) # 示例二分类目标向量 # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 构建简单的LSTM网络用于演示目的 model = Sequential([ LSTM(units=64, input_shape=(X.shape[1], 1)), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train.reshape(-1, X.shape[1], 1), y_train, epochs=10, batch_size=32, validation_data=(X_test.reshape(-1, X.shape[1], 1), y_test)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值