好的,以下是一个用于故障诊断分类任务的cnn-attention模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNNAttention(nn.Module):
def __init__(self, num_classes, num_filters=32, filter_sizes=[3,4,5], dropout_rate=0.5):
super(CNNAttention, self).__init__()
self.num_filters = num_filters
self.filter_sizes = filter_sizes
self.num_classes = num_classes
# CNN layers
self.convs = nn.ModuleList([
nn.Conv2d(1, num_filters, (k, 300)) for k in filter_sizes
])
# Attention mechanism
self.attention_weight = nn.Parameter(torch.Tensor(num_filters, num_filters))
nn.init.xavier_uniform_(self.attention_weight)
# Fully connected layer
self.fc = nn.Linear(num_filters, num_classes)
# Dropout
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, x):
# x shape: (batch_size, seq_len, embedding_dim)
x = x.unsqueeze(1) # x shape: (batch_size, 1, seq_len, embedding_dim)
# Convolutional layers
conv_outputs = []
for conv in self.convs:
conv_output = F.relu(conv(x)).squeeze(3) # conv_output shape: (batch_size, num_filters, seq_len - filter_size + 1)
conv_outputs.append(conv_output)
# Attention mechanism
conv_outputs = torch.stack(conv_outputs, dim=1) # conv_outputs shape: (batch_size, num_filters, num_conv_filter_sizes, seq_len - max(filter_sizes) + 1)
attention_scores = torch.bmm(conv_outputs.transpose(1,2), self.attention_weight.unsqueeze(0).repeat(conv_outputs.shape[0],1,1)) # attention_scores shape: (batch_size, num_conv_filter_sizes, num_filters)
attention_scores = F.softmax(attention_scores, dim=-1) # attention_scores shape: (batch_size, num_conv_filter_sizes, num_filters)
conv_outputs = torch.bmm(attention_scores, conv_outputs) # conv_outputs shape: (batch_size, num_filters, seq_len - max(filter_sizes) + 1)
# Max pooling
pooled = F.max_pool1d(conv_outputs, conv_outputs.size(2)).squeeze(2) # pooled shape: (batch_size, num_filters)
# Dropout
pooled = self.dropout(pooled)
# Fully connected layer
logits = self.fc(pooled) # logits shape: (batch_size, num_classes)
return logits
```
这个模型使用了卷积神经网络(CNN)和注意力机制(Attention)来提取文本特征,然后通过全连接层进行分类。其中,CNN用于提取局部特征,Attention用于加强重要特征的权重,从而更好地捕捉文本中的关键信息。