Q:某电商平台发现最近一周gmv下降了20%,你会如何做异动归因分析。
A:
1、检查指标是否真的有异动
a,检查数据计算链路的问题,可以通过关联指标交叉验证
b,检查业务逻辑和计算口径是否有更改
c,联合数仓同学确认数据质量有无问题
排除掉指标计算的问题后,我们需要从数据角度和业务经验角度,来判断这个指标变化幅度是否是正常波动还是异动。可以基于历史数据波动情况判断。
2、定位异动发生的维度和环节
横向拆维度,纵向拆解公式
a,横向拆维度,就是基于具体业务,常用的一些拆解维度,比如说用户的维度,有性别、年龄、城市等级、消费等级;设备维度有操作系统、新老版本;还有最常见的渠道维度,比如说各个入口,搜索,推荐等
b,纵向拆解公式,就是我们吧一个结果指标,纵向拆解为各个子组成部分,比如说GMV = uv * cr * atv(客单价)
这两个部分需要结合来看,比如我们做GMV下降归因,我们通过漏斗分析定位到时cr出现问题了,就可以进一步对转化率拆解各个用户维度和渠道维度来看,是哪一部分的转化率下降了。
定位到具体问题后,我们就进入下一步,找根本原因
3、挖掘数据异动的根本原因
比如说我们发现GMV下降是因为push渠道的转化率下降导致的。那这个转化率为什么下降呐
从内部原因和外部原因来思考
内部原因:产品迭代、运营活动、技术因素
外部原因:竞品因素、节假日因素。社会事件或舆论因素
找到具体因素后,我们的异动归因就算真的做完。