实数构造与极限

实数

整数1

整数,是序列 { ⋯   , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , ⋯   } {\{\cdots,-4,-3,-2,-1,0,1,2,3,4,\cdots \}} { ,4,3,2,1,0,1,2,3,4,}中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体 Z 或 Z Z 或 \mathbb Z ZZ,源于德语单词Zahlen(意为“数”)的首字母

有理数2

数学上,可以表达为两个整数比的数 ( a b , b ≠ 0 ) ({a \over b}, b \neq 0) (ba,b̸=0)被定义为有理数,例如 3 8 , 0.75 {3 \over 8},0.75 83,0.75(可被表达为 3 4 3 \over 4 43)。整数和分数统称为有理数

所有有理数的集合表示为 Q Q Q Q + Q+ Q+,或 Q \mathbb Q Q。定义如下:
Q = { m n : m ∈ Z , n ∈ Z , n ≠ 0 } \mathbb Q = {\{ {m \over n}:m \in \mathbb Z,n \in \mathbb Z, n \neq 0 \}} Q={ nm:mZ,nZ,n̸=0}

实数
分划

将全集 K K K分划为两个子集 A , B A,B A,B,则 A , B A,B A,B满足

  • A ∪ B = K A \cup B = K AB=K
  • A ∩ B = Φ A \cap B = \Phi AB=Φ
戴德金分划

将全集 Q \mathbb Q Q分为 A , B A,B A,B两个集合
s . t A ∪ B = Q A ∩ B = Φ ∀ a ∈ A , b ∈ B 有 a &lt; b s.t A \cup B= \mathbb Q\\ A\cap B = \Phi\\ \forall a \in A ,b \in B \\ 有 a &lt; b s.tAB=QAB=ΦaA,bBa<b

  1. 若戴德金分划所切割的值为 a a a,而 a a a刚好为A的上界3,则集合A中存在极大值,且B中不存在极大值

  2. 若戴德金分划所切割的值为 b b b,而 b b b刚好为B的下界3,则集合B中存在极小值,且A中不存在极大值

  3. 若戴德金分划所切割的值为 c c c,而 c c c既不在集合A中,也不在集合B中,则集合B中不存在极小值,且A中不存在极大值

其中第1,2点称为有理分划,分划所对应的数为有理数
第3点称为无理分划,分划所对应的数为无理数

实数的定义

实数是有理数和无理数的总称

实数的性质
  • 稠密性

  • 有序性
    全集 Q = A ∪ B \mathbb Q = A \cup B Q=AB 分划1
    全集 Q = A ′ ∪ B ′ \mathbb Q = A&#x27; \cup B&#x27; Q=AB 分划2
    A ⊂ A ′ , A \subset A&#x27;, AA, 1 &lt; 2 1 &lt; 2 1<2

  • 单调有界序列存在极限

元素个数

定义
集合元素的个数
等势
两个集合间元素可一一对应

自然数与整数

自然数 ( N ) (\mathbb N) (N)个数= 整数 ( Z ) (\mathbb Z) (Z)的个数 ↔ \leftrightarrow 自然数与整数是等势的
N &ThickSpace;&ThickSpace; 1 , &ThickSpace;&ThickSpace; 2 , &ThickSpace;&ThickSpace; 3 &ThickSpace;&ThickSpace; , 4 , &ThickSpace;&ThickSpace; 5 , ⋯ \mathbb N \thickspace \thickspace 1,\thickspace \thickspace 2,\thickspace \thickspace 3\thickspace \thickspace ,4,\thickspace \thickspace 5,\cdots N1,2,3,4,5,
Z &ThickSpace;&ThickSpace; 0 , &ThickSpace;&ThickSpace; 1 , − 1 , &ThickSpace;&ThickSpace; 2 , − 2 , ⋯ \mathbb Z \thickspace \thickspace 0, \thickspace \thickspace 1,-1,\thickspace \thickspace 2,-2,\cdots Z0,1,1,2,2,

自然数与有理数

自然数 ( N ) (\mathbb N) (N)个数=有理数 ( Q ) (\mathbb Q) (Q)个数 ↔ \leftrightarrow 自然数与整数是等势的
Figure 1

如上图,将有理数排列为一个二维阵列,从左上角 ( 1 , 1 ) (1,1) (1,1)开始沿着对角线蛇形遍历所有数,遍历顺序如下:
( 1 , 1 ) 1 1 1 → ( 1 , 2 ) 1 2 2 → ( 2 , 1 ) 2 1 3 → ( 3 , 1 ) 3 1 4 → ( 2 , 2 ) 2 2 − 1 → ( 1 , 3 ) 1 3 5 → ( 1 , 4 ) 1 4 6 → ( 2 , 4 ) 2 4 − 1 → ⋯ (1,1)^{1}_{1 \over 1} \rightarrow (1,2)^{2}_{1 \over 2} \rightarrow (2,1)^{3}_{2 \over 1} \rightarrow (3,1)^{4}_{3 \over 1} \rightarrow (2,2)^{-1}_{2 \over 2}\rightarrow (1,3)^{5}_{1 \over 3}\rightarrow (1,4)^{6}_{1 \over 4}\rightarrow (2,4)^{-1}_{2 \over 4} \rightarrow \cdots (1,1)111(1,2)212(2,1)123(3,1)134(2,2)221(1,3)315(1,4)416(2,4)421

其中 ( a , b ) d c (a,b)^{c}_d (a,b)dc, a a a代表横轴位置为 a a a b b b代表纵轴位置为 b b b c c c代表第 c c c次遍历。 d d d代表第 c c c次遍历的结果为 d d d

( 1 , 2 ) 1 2 2 (1,2)^{2}_{1 \over 2} (1,2)212,则表示第2次遍历,遍历位置为 ( 1 , 2 ) (1,2) (1,2),遍历结果为 1 2 1 \over 2 21

如果第 i ( c = i ) i(c=i) i(c=i)次遍历结果与第 i − n ( c = i − n , n &gt; 0 ) i-n(c=i-n,n&gt;0) in(c=in,n>0)次遍历结果相同,则舍弃此次遍历,并将 c c c记为 − 1 ( c = − 1 ) -1(c=-1) 1(c=1)

则遍历次数 c ( c = N ) c(c=\mathbb N) c(c=N)与遍历结果 d ( d = R ) d(d=\mathbb R) d(d=R)一一对应,即 N \mathbb N N R \mathbb R R一一对应

自然数与实数

自然数 ( N ) (\mathbb N) (N)个数 < 实数 ( R ) (\mathbb R) (R)个数 ↔ \leftrightarrow 自然数的势小于实数的势

  1. 实数 ( R ) (\mathbb R) (R) ( 0 , 1 ) (0,1) (0,1)之间的实数一一对应
    构建函数 y = tan ⁡ ( x π − π 2 ) y = \tan (x\pi - {\pi \over 2}) y=tan(xπ2π),其中 x ∈ ( 0 , 1 ) x \in (0,1) x(0,1)
    x → 0 : y → − ∞ &ThickSpace; ⌈ 1 ⌋ x \to 0:y \to -\infin \thickspace \lceil 1 \rfloor x0:y1
    x → 1 : y → &ThickSpace; ∞ &ThickSpace; ⌈ 2 ⌋ x \to 1:y \to \thickspace \infin \thickspace \lceil 2\rfloor x1:y2
    ⌈ 1 ⌋ , ⌈ 2 ⌋ \lceil 1\rfloor,\lceil 2\rfloor 1,2可知,实数 ( R ) (\mathbb R) (R) ( 0 , 1 ) (0,1) (0,1)之间的实数一一对应
  2. 假设自然数 ( N ) (\mathbb N) (N)与实数 ( 0 , 1 ) (0,1) (0,1)一一对应
    则对应关系如下:
    1 ↔ 0. a 1 a 2 a 3 a 4 a 5 a 6 ⋯ 1 \leftrightarrow 0.a_1a_2a_3a_4a_5a_6\cdots 1
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值