SO-DETR:利用双域特征和知识蒸馏进行小目标检测

一、研究背景:小目标检测的困境与机遇

在计算机视觉领域,小目标检测(Small Object Detection)长期面临着三大核心挑战:

  1. 特征表征困境:小目标(<32×32像素)在图像中分辨率低、纹理特征模糊,传统CNN难以提取有效特征
  2. 计算效率瓶颈:现有Transformer检测器(如DETR系列)依赖高层语义特征,忽略低层空间细节,导致计算复杂度居高不下
  3. 查询机制失配:标准DETR的随机初始化查询策略难以适配小目标的分布特性,造成资源错配

以无人机航拍图像为例(VisDrone数据集),典型场景中:

  • 小目标占比超过60%(如行人、自行车等)
  • 背景复杂度高(建筑物遮挡、光照变化等)
  • 实时性要求严苛(30FPS以上)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值