一、研究背景:小目标检测的困境与机遇
在计算机视觉领域,小目标检测(Small Object Detection)长期面临着三大核心挑战:
- 特征表征困境:小目标(<32×32像素)在图像中分辨率低、纹理特征模糊,传统CNN难以提取有效特征
- 计算效率瓶颈:现有Transformer检测器(如DETR系列)依赖高层语义特征,忽略低层空间细节,导致计算复杂度居高不下
- 查询机制失配:标准DETR的随机初始化查询策略难以适配小目标的分布特性,造成资源错配
以无人机航拍图像为例(VisDrone数据集),典型场景中:
- 小目标占比超过60%(如行人、自行车等)
- 背景复杂度高(建筑物遮挡、光照变化等)
- 实时性要求严苛(30FPS以上)