首先声明:该思路在小目标检测领域尚未有成果发表,感兴趣的小伙伴可以借鉴!
一、引言
1.1 研究背景
- 小目标检测在交通监控(车牌识别)、工业检测(PCB缺陷)及农业(病虫害斑点)等领域具有重要应用价值
- 传统单模态检测方法在复杂场景下的漏检率高达40%以上(VisDrone 2021统计)
- 多模态融合与时序建模能有效提升小目标特征表达能力
1.2 创新点
- 双路时序特征融合:结合RGB与热红外模态的时空特征
- 轻量化注意力机制:SE模块与TCN扩张卷积的联合优化
- 小目标增强策略:SPD-Conv代替下采样,保留高频细节
二、模型架构
2.1 核心模块实现
TCN-SE模块(Python/PyTorch)
python
class TCN_SE(nn.Module):
def __init__(self, in_c, ratio=16):
super().__init__()
# 时间卷积层
self.tcn = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3,
padding=2, dilation=2, groups=in_c),
nn.BatchNorm2d(in_c),
nn.GELU()
)
# 通道注意力
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_c, in_c//ratio, 1),
nn.ReLU(),
nn.Conv2d(in_c//ratio, in_c, 1),
nn.Sigmoid()
)
def forward(