基于多模态双路TCN-SE-YOLO的小目标检测

首先声明:该思路在小目标检测领域尚未有成果发表,感兴趣的小伙伴可以借鉴!

一、引言

1.1 研究背景
  • 小目标检测在交通监控(车牌识别)、工业检测(PCB缺陷)及农业(病虫害斑点)等领域具有重要应用价值
  • 传统单模态检测方法在复杂场景下的漏检率高达40%以上(VisDrone 2021统计)
  • 多模态融合与时序建模能有效提升小目标特征表达能力
1.2 创新点
  1. 双路时序特征融合:结合RGB与热红外模态的时空特征
  2. 轻量化注意力机制:SE模块与TCN扩张卷积的联合优化
  3. 小目标增强策略:SPD-Conv代替下采样,保留高频细节

二、模型架构

2.1 核心模块实现
TCN-SE模块(Python/PyTorch)​
python
class TCN_SE(nn.Module):
    def __init__(self, in_c, ratio=16):
        super().__init__()
        # 时间卷积层
        self.tcn = nn.Sequential(
            nn.Conv2d(in_c, in_c, kernel_size=3, 
                     padding=2, dilation=2, groups=in_c),
            nn.BatchNorm2d(in_c),
            nn.GELU()
        )
        # 通道注意力
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_c, in_c//ratio, 1),
            nn.ReLU(),
            nn.Conv2d(in_c//ratio, in_c, 1),
            nn.Sigmoid()
        )

    def forward(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值