用于多变量时间序列预测的多尺度模型A multiscale model for multivariate time series forecasting

研究背景与动机

  1. 问题提出​:
    现有时间序列预测模型(如Transformer变体)大多基于单一时间尺度,难以捕捉多粒度时间模式(如小时、日、季节),且常忽略变量间的跨通道相关性,导致预测精度受限。

  2. 现有方法局限​:

    • 多尺度模型(如Scaleformer)需为不同尺度分配独立参数,增加计算复杂度与过拟合风险。
    • 通道相关性建模不足(如PatchTST采用通道独立处理)。
    • 解码器使用单层线性映射,在长预测范围中易受噪声干扰。

模型创新:MultiPatchFormer

1. ​多尺度嵌入(Multi-scale Embedding)​
  • 设计​:输入序列通过4种不同长度的Patch​(如8/16/24/48)分割,每尺度使用独立1D卷积映射至子空间(维度=dmodel​/4),再拼接为统一特征表示。
  • 优势​:共享参数捕捉跨尺度时序模式(如电力数据的日/月周期),避免多套参数。
2. ​双阶段编码器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值