研究背景与动机
-
问题提出:
现有时间序列预测模型(如Transformer变体)大多基于单一时间尺度,难以捕捉多粒度时间模式(如小时、日、季节),且常忽略变量间的跨通道相关性,导致预测精度受限。
-
现有方法局限:
- 多尺度模型(如Scaleformer)需为不同尺度分配独立参数,增加计算复杂度与过拟合风险。
- 通道相关性建模不足(如PatchTST采用通道独立处理)。
- 解码器使用单层线性映射,在长预测范围中易受噪声干扰。
模型创新:MultiPatchFormer
1. 多尺度嵌入(Multi-scale Embedding)
- 设计:输入序列通过4种不同长度的Patch(如8/16/24/48)分割,每尺度使用独立1D卷积映射至子空间(维度=dmodel/4),再拼接为统一特征表示。
- 优势:共享参数捕捉跨尺度时序模式(如电力数据的日/月周期),避免多套参数。


最低0.47元/天 解锁文章
1244

被折叠的 条评论
为什么被折叠?



