yolov8 save_dir设置setting文件

yolov8使用pip3 install ultralytics后,
基于命令行训练时,训练过程及结果都会默认保存到run/detect/trainx中,但因为训练服务器时公用的,先前都是基于docker作为工作的环境,后面使用conda虚拟环境进行开发时,发现文件保存的路径有问题,是一个指定的路径。
查看源码暂未找到问题原因,后来查看到yolo hep等相关的信息,才发现问题原因。

yolo settings查看到了下面信息

在这里插入图片描述

注释掉相关内容

在这里插入图片描述
在执行训练时,文件就会保存在工程下的runs文件夹下了。

### 如何在Python项目中更改 `save_dir` 的目录路径 在 Python 项目中,如果需要更改 `save_dir` 路径,可以通过多种方式实现。以下是具体方法: #### 方法一:通过配置文件修改默认路径 某些框架(如 Ultralytics YOLO)允许通过配置文件调整默认行为。例如,在项目的虚拟环境 (`venv`) 中找到对应的配置文件并进行修改。 对于 Ultralytics 框架,默认配置存储于 `ultralytics/cfg/default.yaml` 文件中。可以按照以下步骤操作: 1. 定位到 `default.yaml` 配置文件。 2. 添加或更新 `save_dir` 参数以指定新的保存路径。例如: ```yaml # Save Path save_dir: /path/to/your/desired/save_directory/ ``` 这种方法适用于全局范围的路径变更需求[^3]。 #### 方法二:动态传递参数至函数调用 许多机器学习模型提供了灵活的功能接口来支持运行时自定义选项。比如使用 `Model.predict()` 函数预测数据时,可以直接传入 `save_dir` 参数覆盖默认值。代码示例如下所示: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练模型 results = model.predict(source='example.jpg', save=True, save_dir='/custom/path/') ``` 上述脚本会将预测结果存放到 `/custom/path/` 下面而不是依赖内置逻辑决定的位置。 #### 方法三:利用相对路径与绝对路径转换技巧 考虑到实际开发过程中可能遇到不同操作系统间路径表达差异等问题,推荐始终采用标准化的方式构建目标地址字符串。借助 os 或 pathlib 库能够轻松完成此类任务。下面给出一段示范代码片段用于演示如何安全地拼接得到最终版的目标存储位置: ```python import os base_path = '/project/root/' relative_subdir = 'output/predictions/' absolute_save_dir = os.path.join(base_path, relative_subdir) print(f'Absolute path to save directory is {absolute_save_dir}') ``` 这段程序首先定义了一个基础路径变量 base_path 和子目录名称 relative_subdir ,接着运用 os.path.join() 方法组合成完整的绝对路径 absolute_save_dir 。最后打印输出确认无误后再将其赋给相关 API 的 save_dir 参数即可[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值