广义预测控制 Matlab代码

本文描述了一名研究生在学习广义预测控制理论后,实践编程实现了该控制算法,并通过示例展示了如何使用RLS进行辨识参数估计、处理控制增量和输出数据。结果通过图形展示参数随时间的变化以及系统的响应情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

研究生正在学习研究广义预测控制,根据书中的内容和自己的修改完善了广义预测控制代码,已跑通

clear all;close all;

a=[1 -2 1.1];b=[1 2];c=1;d=1;%对象参数
na=length(a)-1; b=[zeros(1,d-1) b]; nb=length(b);%多项式A、B、C阶次(因d!=0,对b添0)
naa=na+1; %aa的阶次

N1=d; N=8; Nu=5; %最小输出长度、预测长度、控制长度
gamma=10*eye(Nu); alpha=0.7; %控制加权矩阵、输出柔化系数

L=400; %控制步数
uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i)
duk=zeros(d+nb,1); %控制增量初值
yk=zeros(na,1); %输出初值
dyk=zeros(na,1); %输出增量初值
w=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)]; %设定值——期望输出
xi=sqrt(0.01)*randn(L,1); %白噪声序列

%RLS初值
thetae_1=0.001*ones(na+nb-d+2,1); %不辨识b中添加的0
P=10^6*eye(na+nb-d+2);
lamda=1; %遗忘因子[0.9 1]

for k=1:L
     time(k)=k;
    dy(k)=(-dyk(1:na)')*a(2:na+1)'+duk(1:nb)'*b'; %利用历史数据求出det y
    y(k)=yk(1)+dy(k); %采集系统当前输出数据
    Yk=[y(k);yk(1:na)]; %构建向量Y(k)——当前及过去的输出
    dUk=duk(1:nb); %构建向量△U(k-j)——过去的控制增量向量
   
    %参考轨迹
    yr(k)=y(k);
    for i=1:N
        yr(k+i)=alpha*yr(k+i-1)+(1-alpha)*w(k+d);
    end
    Yr=[yr(k+N1:k+N)]; %构建向量Yr(k)——未来参考轨迹
    
    %遗忘因子递推最小二乘法
    phie=[-dyk(1:na);duk(d:nb+d)]; %duk-d:d+nb+1?
    K=P*phie/(lamda+phie'*P*phie);
    thetae(:,k)=thetae_1+K*(dy(k)-phie'*thetae_1);
    P=(eye(na+nb-d+2)-K*phie')*P/lamda;
     
    %提取辨识参数
    ae=[1 thetae(1:na,k)']; be=[zeros(1,d-1) thetae(na+1:na+nb-d+2,k)']; 
    aae=conv(ae,[1 -1]);
    
    %求解多步Diophantine方程并构建F1、F2、G
    [E,F,G]=multidiophantine(aae,be,c,N);
    G=G(N1:N,:);
    F1=zeros(N-N1+1,Nu); F2=zeros(N-N1+1,nb);
    for i=1:N-N1+1
        for j=1:min(i,Nu)
            F1(i,j)=F(i+N1-1,i+N1-1-j+1);
        end
        for j=1:nb
            F2(i,j)=F(i+N1-1,i+N1-1+j);
        end
    end
    
    %求控制量
    dU=inv(F1'*F1+gamma)*F1'*(Yr-F2*dUk-G*Yk); %△U
    du(k)=dU(1);
    u(k)=uk(1)+du(k);
    
    %更新数据
    thetae_1=thetae(:,k);
    
    for i=1+nb:-1:2
        uk(i)=uk(i-1);
        duk(i)=duk(i-1);
    end
    uk(1)=u(k);
    duk(1)=du(k);
    
     for i=na:-1:2
         yk(i)=yk(i-1);
         dyk(i)=dyk(i-1);
     end
     yk(1)=y(k);
     dyk(1)=dy(k);
end
figure(1)
subplot(2,1,1);
plot(time,w(1:L));
hold on
plot(time,y)
xlabel('k');ylabel('w(k),y(k)');
legend('w(k)','y(k)');axis([0 time(k) -20 20]);
subplot(2,1,2)
plot(time,u);
xlabel('k');ylabel('u(k)');axis([0 time(k) -10 10]);
figure(2)
plot([1:L],thetae);
xlabel('k');ylabel('辨识参数a,b');
legend('a_1','a_2','a_3','b_0','b_1');axis([0 L -3 3]);

结果如图:

想要更好的结果,可以调参。

### 回答1: 广义预测控制(Generalized Predictive Control,简称GPC)是一种基于模型的预测控制方法,主要用于对于系统的非线性、时变和多变量特性进行建模和控制。在Matlab中,我们可以利用其强大的数值计算和仿真工具来进行广义预测控制的仿真实验。 首先,我们需要根据实际系统的特性建立其数学模型,包括系统的状态空间表示、输入输出关系等。在Matlab中,可以利用Simulink或Stateflow等工具进行建模。建立好模型后,我们可以使用工具箱函数如tf、ss、frd等将模型转化为Matlab可处理的形式。 接下来,我们可以使用GPC控制方法对系统进行仿真。在Matlab中,可以使用函数如gpc、sim、lsim等来进行仿真实验。首先,我们需要选择合适的预测模型和控制器参数,并将其输入到gpc函数中进行控制器设计。然后,使用sim函数将设计好的GPC控制器和系统模型进行联合仿真,得到系统的响应结果。可以根据仿真结果进行性能评估,如稳态误差、响应速度等。 在进行广义预测控制的仿真实验时,我们可以对系统进行不同的扰动和负载变化测试,观察控制效果。通过不断调整控制器参数和优化预测模型,可以逐步改善控制性能,使系统响应更加准确稳定。 总之,利用Matlab进行广义预测控制的仿真可以帮助我们深入理解系统的特性和控制方法,并为实际应用提供参考。通过不断优化和调整,可以得到更好的控制效果,提高系统的稳定性和性能。 ### 回答2: 广义预测控制(GPC)是一种先进的控制算法,可以在未来一段时间内对系统进行预测,并根据预测结果来调整控制器的输出。MATLAB可以用于进行GPC的仿真研究,提供了强大的数值计算和控制算法实现的功能。 在MATLAB中,通过使用预测模型和控制模型来实现GPC。首先,需要确定系统的数学模型,并使用MATLAB的系统辨识工具对其进行参数估计,得到预测模型。预测模型可以是ARX模型、ARMA模型等。 在预测模型得到后,可以使用MATLAB中的预测控制函数进行GPC控制策略的设计。GPC需要设置控制时域、控制目标、优化目标、约束条件等参数,这些参数可以根据具体应用进行调整。 在进行GPC仿真时,可以利用MATLAB中的仿真环境搭建系统模型,并将预测模型和控制模型引入仿真系统中。通过运行仿真程序,可以观察和分析系统的响应情况,评估GPC控制策略的性能。 MATLAB提供了丰富的工具箱,如Control System Toolbox、System Identification Toolbox等,可以支持GPC算法的开发和仿真。同时,MATLAB还提供了可视化和数据分析工具,可以对仿真结果进行可视化展示和进一步分析。 总而言之,通过MATLAB进行广义预测控制的仿真研究可以帮助工程师和研究人员快速验证和优化控制算法,加快系统开发和优化的速度。同时,MATLAB提供了丰富的功能和工具,可以支持复杂系统的模型构建、参数估计和控制策略设计。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nofear-085

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值