EfficientDet: Scalable and Efficient Object Detection
https://arxiv.org/abs/1911.09070
1.文章采用了哪些主要优化方法,提高性能
1)使用bifpn, 2)使用了复合缩放办法,,对主干、特征网络、方框/分类预测网络一致的缩放:尺度、深度、宽度
2.什么是一阶段的目标检测?
直接基于anchor预测,不产生proposal network,例如ssd
3.什么是anchor-free的目标检测?
不用anchor, 直接回归物体的定点
4.efficientdet是否开源了语义检测部分,论文中提到比deeplabv3+,更准,但是参数少了9.8倍?
没有开源
5.传统自顶向下的fpn,信息流是单向的,怎么解释?
这里应该指从主干出来的特征层,组成的网络
6.biFPN 首先去掉了PANET的单输入节点,然后同一个尺度的特征,加入了直连, 请问PANET中有哪些是单输入节点?
P7后面的节点,以及P3后面的后面的节点
7. biFPN中加入权值的特征融合,是w0 x0 + w1 x1的方式吗?w的取值范围是多少?
不是,因为这样w取值范围很大,训练很不稳定; w>=0,使用了relu
使用softmax方式,运算量很大,所以采用了w0/(w0+w1)的方式归一化
8.使用efficientdet 里面深度等计算公式,计算b0, b7的 宽度,深度,尺度的缩放系数?
B0: 宽度缩放系数64, 深度缩放系数3, 类别/方框层数系数 3, 输入尺度512
B6: 通道数系数64*1.35^6=387 384, 网络层数3+6=9 8, 类别/方框层数3+6/2 = 6 5 输入 512+6*128 = 1280
9.什么是学习率,的余弦衰减
10. 什么是focal loss?
11. b0 和yolov3 的准确度和性能对比如何?
准确度差不多,b0比yolov3 少28倍
12. efficientdet用于物体检测用了哪些特征层, 做语义分割用了哪些层?
p3-p7, p2-p7
13.什么是深度可分离卷积?
可分离指的是对输入特征,逐通道做一个卷积,所以输出通道等于输入通道,最后用1x1卷积,融合多个通道特征,并改变输出通道数。