斯坦福开源端侧大模型Octopus v2,2B参数量可在移动端运行,性能超越GPT-4,准确率超Llama7B

前言

斯坦福大学研究人员近日推出了开源端侧大模型Octopus v2,引起了广泛关注。Octopus v2拥有20亿参数量,可以在智能手机、车载系统等终端设备上高效运行,在准确性和推理速度方面都超越了GPT-4。

  • Huggingface模型下载:https://huggingface.co/NexaAIDev/Octopus-v2

  • AI快站模型免费加速下载:https://aifasthub.com/models/NexaAIDev

针对性设计与训练

Octopus v2针对自动化任务中的函数调用问题进行了优化设计。相比于传统的检索增强生成(RAG)方法,Octopus v2在训练和推理阶段采用了独特的函数token策略:

  • 将常用函数名称标记化为特殊的函数token,使模型能够更准确地预测函数名称,提高了效率。

  • 构建了包含相关查询、函数调用参数以及不相关查询的数据集,并引入了二进制验证机制,确保数据质量。

  • 设计了三种不同风格的提示模板,包括单个函数调用、并行函数调用和嵌套函数调用,帮助模型学会将函数描述映射到对应的token。

这些针对性的设计使Octopus v2能够在各种复杂场景中生成准确的函数调用,无论是单独的、嵌套的还是并行的。

在实际应用中,利用大章鱼(Octopus)系统和R语言进行大规模数据集的机器学习分析,需要关注数据预处理、模型选择、训练过程以及性能优化等方面。首先,由于数据集通常很大,需要在R中加载数据时采用适当的内存管理和数据格式选择,如使用HDF5格式或Bigmemory包来提高数据读取和处理的效率。 参考资源链接:[南京大学PASA大数据技术实验室发布跨平台大章鱼:R语言大数据机器学习与分析框架](https://wenku.csdn.net/doc/50ozb1komi?spm=1055.2569.3001.10343) 接下来,在模型选择阶段,需要针对数据集的特点选择合适的机器学习算法,例如决策树、随机森林或梯度提升机等。大章鱼系统内置了多种机器学习算法,并对这些算法进行了优化,以适应大规模数据集的特性。 在模型训练阶段,考虑到计算资源的限制,可以通过并行计算来加速模型的训练过程。大章鱼系统支持跨平台并行计算,能够将任务分布到多台机器上执行。你可以利用R语言中的parallel包,或者大章鱼系统提供的并行框架,来实现这一点。 在性能优化方面,大章鱼系统针对Hadoop和Spark的性能优化提供了支持,可以利用这些优化来提高机器学习任务的效率。具体来说,包括优化Hadoop的任务调度和Spark的RDD持久化策略,从而在保证计算准确性的基础上提升性能。 最后,为了验证模型的泛化能力,需要在独立的测试集上评估模型的性能。同时,可以采用交叉验证等技术来进一步优化模型参数,提高模型的稳定性和准确性。 通过以上步骤,可以有效地利用大章鱼(Octopus)系统进行大规模数据集的机器学习模型训练,并针对性能进行优化。建议深入阅读《南京大学PASA大数据技术实验室发布跨平台大章鱼:R语言大数据机器学习与分析框架》一书,获取更多细节和高级技巧,以进一步提升数据分析和机器学习的效率和效果。 参考资源链接:[南京大学PASA大数据技术实验室发布跨平台大章鱼:R语言大数据机器学习与分析框架](https://wenku.csdn.net/doc/50ozb1komi?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值