二阶常微分方程-龙格库塔法

当刚体受力以后,通常会在介质中运动受到阻力,一般阻力大小正比速度,即kv,或者速度的平方kv^2,方向相反,速度是物体位移-时间微分曲线x(t)的一阶导x’=v,加速度是二阶导x’’=a,假设受力为T,质量为m,这样t时刻,对象受力情况为
f(t)=T-kv=ma

T-kx’=mx’’ 化为
x’’=T/m-kx’
这是一个二阶常微分方程
x’’=f(t,x,x’)
初值x(t0)=x0, x’(t0)=x’0

令x’=v,则化为一个一阶常微分方程
v’=f(t,x,v)
四阶龙格库塔法的推导表达式格式如下,其中h为时间步长dt当前步下标为i,下一步为j:
xj=xi + h* vi + (h* h/6.0)(L1+L2+L3);
vj=vi + (h/6.0)(L1+2* L2+2* L3+L4);
其中
hf=h/2.0;
L1=f(ti, xi, vi)
L2=f(ti+hf, xi+hf* vi, vi+hf* L1)
L3=f(ti+hf, xi+hf* vi+hf* hf* L1, vi+hf* L2)
L4=f(ti+h, xi+hf* vi+h* hf* L2, vi+h* L3)

四阶龙格-库塔方法是一种数值求解常微分方程初值问题的算法。虽然通常用于求解单个一阶微分方程,但可以将其扩展以求解二阶常微分方程组。二阶常微分方程组可以转化为两个一阶微分方程组来使用四阶龙格-库塔方法求解。 以下是使用四阶龙格-库塔方法在MATLAB中求解二阶常微分方程组的基本步骤: 1. 将二阶微分方程转换为一阶方程组:假设有一个二阶常微分方程组 ``` d^2y/dt^2 = f1(t, y, dy/dt) d^2z/dt^2 = f2(t, z, dz/dt) ``` 可以定义两个新的变量 u 和 v 来表示 y 和 z 的一阶导数: ``` u = dy/dt v = dz/dt ``` 于是原方程组可以转换为一阶方程组: ``` dy/dt = u du/dt = f1(t, y, u) dz/dt = v dv/dt = f2(t, z, v) ``` 2. 编写函数文件:需要定义一个函数,该函数接收当前的 t, y, z, u, v 作为输入,并返回 dy/dt 和 dz/dt 的值。例如: ```matlab function [dydt, dzdt] = odefun(t, y, z, u, v) dydt = u; dzdt = v; du_dt = f1(t, y, u); % 根据实际函数进行定义 dv_dt = f2(t, z, v); % 根据实际函数进行定义 end ``` 3. 使用MATLAB内置函数求解:MATLAB提供了一个名为`ode45`的函数,它实现了四阶龙格-库塔方法。你可以使用这个函数来求解上面定义的方程组: ```matlab % 初始条件 y0 = [y初值; dy初值/dt]; % 初始y值和y的导数 z0 = [z初值; dz初值/dt]; % 初始z值和z的导数 % 时间跨度 tspan = [t开始, t结束]; % 调用ode45求解 [t, yz] = ode45(@(t, yz) odefun(t, yz(1), yz(3), yz(2), yz(4)), tspan, [y0; z0]); % 提取结果 y = yz(:, 1); z = yz(:, 3); ``` 请注意,上述代码仅为示例,您需要根据实际的微分方程调整`odefun`函数中的`f1`和`f2`表达式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值