腹直肌下部(03):罗马椅抬腿

转自:http://blog.sina.com.cn/s/blog_60ad794b0100ey2g.html


罗马椅抬腿(Roman Chair Leg Raise)其实是比较稳定的一种悬垂举腿。对于手臂肩力量不够的人来说,是更有效锻炼下腹的方法。

 

目标锻炼肌肉:腹直肌下部(下腹)

 

动作要领:


1.准备姿式:将身体非常稳定的固定在悬垂举腿的器械上。要求双手握紧握把,上身紧贴在靠背上,眼睛平视前方,收腹挺胸,双腿并拢垂直向下,脚面绷直。

 

 

2.动作过程:将双腿迅速抬起到与地面水平的位置,停留1-2秒钟的时间缓慢的放下到原来的位置上,注意一定要快起慢回,使腹肌始终保持在紧张的状态,锻炼效果更佳。然后再反复进行。


 

3.动作过程中注意呼吸:深吸一口气,抬腿时呼气,整口气要在动作结束时正好呼尽。双腿下落还原时吸气,当动作还原到起始位置的时候,整口气要吸满,然后再进行下一个动作的练习。



 

注意事项:

 

1.动作过程中不要将上半身离开靠背,否则背部肌群会借力,特别是腰部的竖棘肌,说明此时后背部肌群也在参与整个抬腿的动作,从而减少腹肌的承受压力。这样也就大大影响了锻炼腹肌的效果。所以越是感觉腹肌没有力气的时候越是要保证动作的标准性。哪怕一次只能起几个,也不要靠其它部位借力来运动。

 

2.每次可以进行3-4组,每组必须达到力竭。开始时每周练习三次,练习两个月后,可以增加到每周五次,锻炼效果会更好。

 

3.罗马椅抬腿的动作主要是针对下腹的锻炼,如果在练习一段时间后,双腿抬得更高些,甚至可以触到胸部,这时整个腹肌都会参与运动,上腹也会得到很好的锻炼效果。


更多腹肌锻炼方法参考博文 腹肌锻炼方法系列大全



基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值