腹肌介绍:肌肉图示和英文名称

转自: http://blog.sina.com.cn/s/blog_60ad794b0100eb05.html


 

   腹肌(Abdominals),包括腹直肌、腹外斜肌、腹内斜肌和腹横肌等。

 

   腹肌的作用:共同保护腹腔脏器,收缩时可以缩小腹腔,增加腹压以协助排便、分娩和呕吐,又可使脊柱前屈和旋转等。

 

   腹部肌肉比体内其它肌肉更易消退,缺乏运动时,因营养过剩,腹部脂肪大量堆积而下坠时,最易使腹肌松弛。腹部下垂(或下坠)和身体发胖,是人体一般健康水平开始下降的标志。而腹肌发达,呈“波浪形”肌块,则是自我健美训练者训练有素的标志。

 

 

                                       

(1)腹直肌: Rectus Abdominals

位于腹前壁正中线的两侧,左右各一块肌肉。为扁长带状肌,肌纤维被3-4条横行腱分割,因此腹直肌给人假象是6-8块。

锻炼时把它分为上下两部分来看待,即通常所说的上下腹,其实是一块肌肉,因为大多数动作只能锻炼腹直肌上部或者下部。

 

(2)腹外斜肌: External Oblique

位于腹前外侧浅层,为扁阔肌。采用负重体侧屈和负重体侧转等练习可发展该肌的力量。

 

(3)腹内斜肌: Internal Oblique

位于腹外斜肌深层,与腹外斜肌形状相同,走向相反。主要是配合腹外斜肌的运动。因此锻炼腹外斜肌必涉及锻炼腹内斜肌。

 

(4)腹横肌:Tranverse Abdominals

位于腹内斜肌深面,肌束向前内横行,在腹直肌外侧缘移行为腹横肌腱膜,参与构成腹直肌鞘。腹横肌的最下部肌束及其腱膜下内侧部分,分别参与提睾肌和联合腱的构成。


各部分肌肉锻炼方法参考博文 腹肌锻炼方法系列大全


在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉图像处理领域的技术。在深度学习机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测匹配、几何变换等功能。此外,MATLAB还支持编程脚本,方便算法的调试优化。 深度学习机器学习在此处的角色主要是改进匹配过程图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性质量。 基于块匹配的全景图像拼接是通过匹配融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习机器学习的先进方法,提升匹配精度图像融合质量。通过对压缩包中的代码数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值