随机资源优化用于无线供电混合编码边缘计算网络
为了在下一代无线通信网络中实现无处不在的人工智能(AI),诸如数据处理和模型训练等计算密集型任务必须由能源受限的终端用户执行。在本文中,我们提出了一种混合编码边缘计算网络,用户可以选择通过以下方式完成计算任务:i)利用基站提供的无线能量进行本地计算,ii)编码边缘卸载,或iii)涉及边缘卸载和本地计算的混合计算。为了最小化整体网络成本,我们提出了一种随机资源优化方法。鉴于无线充电效率和边缘服务器计算能力的随机性,这些只能事后观察到,每个用户的计算策略使用两阶段随机整数规划(SIP)确定。为了解决SIP问题的复杂性,其随网络规模增加而增加,我们引入了Benders’分解和样本平均逼近的高效计算方法。此外,我们提出了一个特殊情况的多阶段随机卸载优化,适用于可以在多个阶段执行修正边缘卸载操作的情况,例如,对于不需要在第二阶段完成的非时间敏感任务。最后,我们进行了广泛的敏感性分析,评估了在不同网络参数变化情况下所提出的最小化成本方法的性能。我们证明我们的方法在网络成本最小化方面优于确定性优化方法。
图1. 多层次计算的系统模型。