无人驾驶算法学习(十四):轮速计差速模型之航迹推算

本文详细解析了移动机器人双轮差速模型及其航迹推算原理。通过数学推导,阐述了左右轮速度与机器人前进速度、转向角速度的关系,以及如何根据这些参数进行航迹推算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.双轮差速模型

下图是移动机器人在两个相邻时刻的位姿,其中 θ 1 {\theta_1} θ1是两相邻时刻移动机器人绕圆弧运动的角度, θ 3 {\theta_3} θ3是两相邻时刻移动机器航向角(朝向角head)的变化量。l是左右轮之间的间距,d是右轮比左轮多走的距离。r是移动机器人圆弧运动的半径。移动机器人前进速度v、转向角速度w与左轮速度vl、右轮速度vr之间的转换。
在这里插入图片描述
移动机器人前进速度等于左右轮速度的平均,这个好理解。
在这里插入图片描述
现在来推导机器人航向角如何计算,以及如何计算角速度w。如图所示,把两个时刻的机器人位置叠加在一起,可以清楚的看到移动机器人航向角变化量是 θ 3 {\theta_3} θ3。从图中的几何关系可以得到:
在这里插入图片描述
也就是说移动机器人航向角变化了多少角度,它就绕其运动轨迹的圆心旋转了多少角度。这句话很好验证,我们让机器人做圆周运动,从起点出发绕圆心一圈回到起点处,在这过程中机器人累计的航向角为360度,同时它也确实绕轨迹圆心运动了360度,说明机器人航向角变化多少度,就绕圆心旋转了多少度。而这三个角度中, θ 2 {\theta_2} θ2很容易计算出来,由于相邻时刻时间很短,角度变化量很小,有下面的近似公式:
在这里插入图片描述
所以可以得到机器人绕圆心运动的角速度,它也是机器人航向角变化的速度:
在这里插入图片描述
线速度、角速度都有了,因此可以推出移动机器人圆弧运动的半径:
在这里插入图片描述
从公式(3)可以发现当左轮速度等于右轮速度时,半径无穷大,即直线运动。最后将三个公式综合起来,可以得到左右轮速度和线速度角速度之间的关系如下
在这里插入图片描述

2.航迹推算

M6Ly9ibG9nLmNzZG4ubmV0L29yYW5nZV9saXR0bGVnaXJs,size_16,color_FFFFFF,t_70)

在这里插入图片描述

参考:https://blog.csdn.net/heyijia0327/article/details/47021861
https://blog.csdn.net/KYJL888/article/details/100515455

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值