使用Ollama私有化部署本地大模型方案

安装Ollama

Ollama 是一个用于运行和管理大型语言模型的工具,它是一个轻量级服务,可在本地环境中实现对模型的使用和管理,保证了数据的隐私和安全性。

Ollama 支持多种大型语言模型,例如 llama、phi、mistral、gemma 等,具有较强的功能扩展性,例如支持模型的下载、删除、更新等操作,方便用户对模型进行管理。同时,它还支持与其他工具和平台的集成,如 OpenAI 兼容的 API,进一步扩展了其应用范围和功能。

下载

​ 访问 Ollama 官网,点击 “Windows” 按钮下载安装程序,然后双击安装程序进行安装。

在这里插入图片描述

安装完成后,打开 Windows 的命令提示符(PowerShell 等),输入 ollama -v(ollama --version) 查看安装版本。

在这里插入图片描述在这里插入图片描述

若出现版本信息就代表ollama安装成功了。

配置

​ 打开系统环境变量配置,添加一个环境变量 OLLAMA_MODELS,将其值设置为你指定的文件夹路径(例如 D:\ollama_model),这样可以避免模型文件自动保存在 C 盘(C:\Users\用户\.ollama\models)导致 C 盘空间不足。修改后在这里插入图片描述
重启终端(如PowerShell或CMD)以使更改生效。

模型安装

Ollama支持的模型列表

模型 参数 模型大小 安装
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi-3 3.8B 2.3GB ollama run phi3
Mistral 7B 4.1GB ollama run mistral
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

可以访问 Ollama 模型仓库,查看具体支持所有模型
在这里插入图片描述

如需安装llama3.2点击进入
在这里插入图片描述

在命令行窗口中录入指令 ollama run llama3.2安装
在这里插入图片描述

安装完成后,使用命令ollama list来查看已下载的模型列表。

在这里插入图片描述

模型运行

​ 模型的运行和安装指令一样,都是ollama run 模型名称,如果模型未安装会自动安装。

在这里插入图片描述

​ 使用/bye退出

<think>好的,用户想了解如何使用Ollama部署私有化的大型语言模型。我需要根据提供的引用资料来整理步骤。首先,记得引用中的步骤包括下载模型文件、创建Modelfile,然后通过Ollama加载和启动服务。 先检查用户提供的引用,引用4提到从HF或ModelScope下载GGUF文件,并创建Modelfile。然后引用2和3提到启动服务使用ollama serve,并通过API调用。需要把这些步骤串起来,可能还要注意如何自定义知识库,如引用1提到的。 用户可能需要详细的步骤,比如如何创建Modelfile的具体内容,如何启动服务,以及如何调用。另外,用户可能对如何上传自己的文档训练模型感兴趣,但引用1提到的是后续更新,所以可能需要说明目前的功能。 还要注意可能的常见问题,比如启动后如何退出(Ctrl+d),以及如何查看已下载的模型。确保步骤清晰,分点说明。最后生成相关问题,覆盖部署步骤、优化、应用场景等。</think>### 使用Ollama部署私有化大模型的方法 #### 1. 准备模型文件 - 从Hugging Face(HF)或ModelScope等平台下载GGUF格式的大模型文件,例如文件名为`Llama3-8B-Chinese-Chat-f16-v2_1.gguf`[^4]。 - 将模型文件存放在本地指定目录,例如`~/models/`。 #### 2. 创建Modelfile 在模型文件目录中新建`Modelfile`文件,内容需指定模型路径: ```Modelfile from ./Llama3-8B-Chinese-Chat-f16-v2_1.gguf ``` 此文件定义了Ollama加载模型的方式。 #### 3. 加载私有模型 在终端执行以下命令,将模型加载到Ollama: ```bash ollama create my-private-model -f Modelfile ``` 其中`my-private-model`为自定义模型名称。 #### 4. 启动Ollama服务 运行以下命令启动服务: ```bash ollama serve ``` 服务启动后,可通过`http://localhost:11434`访问REST API进行调用[^2]。 #### 5. 调用私有模型 通过API发送请求(示例使用Python): ```python import requests response = requests.post( "http://localhost:11434/api/generate", json={"model": "my-private-model", "prompt": "你好,介绍一下自己"} ) print(response.json()["response"]) ``` #### 6. 管理模型 - 查看已下载模型:`ollama list` - 退出服务:按`Ctrl+d`[^3] - 重新启动服务:再次执行`ollama serve` #### 7. 自定义知识库(进阶) 虽然当前版本需通过Modelfile定义模型,但未来可通过上传文档训练私有化模型实现更深度定制[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值