解读CVPR2024-3DGS论文分享|DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with .....

论文标题

DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization

DNGaussian:使用全局-局部深度归一化优化稀疏视图3D高斯辐射场

论文链接:

https://arxiv.org/abs/2403.06912

论文作者

Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu

内容简介

这篇论文介绍了DNGaussian,这是一个基于3D高斯辐射场的深度正则化框架,用于实现实时、高质量的少样本新视角合成,同时降低成本。

DNGaussian通过深度约束来解决输入视图减少时场景几何退化的问题,并提出了硬深度和软深度正则化以及全局-局部深度归一化技术,以在粗略的单目深度监督下恢复准确的场景几何,同时保持精细的颜色表现。通过在LLFF、DTU和Blender数据集上的广泛实验,DNGaussian在显著降低内存成本、减少训练时间25倍、渲染速度提升3000倍以上的同时,超越了现有最先进方法,实现了可比或更好的结果。

### 关于3DGS在大数据集上的训练 对于3D几何场景(3DGS)的大规模数据集训练而言,当前面临的主要挑战在于获取足够的高质量三维数据以及有效的自动化标注机制[^1]。由于互联网缺乏像二维图像那样丰富的3D资源库,因此构建大型3D数据集通常依赖于专门设备采集的真实环境信息或是通过合成方式生成虚拟物体。 针对这一情况,谷歌发布的13GB容量、涵盖17种类别共1030件家庭用品的高精度3D扫描数据集成为了一个重要突破点[^3]。该数据集不仅提供了大量可用于研究和开发的基础素材,同时也促进了更精确模型的学习过程。为了充分利用此类资源并实现高效训练,在设计算法时需考虑以下几个方面: #### 数据预处理 - **标准化**:确保输入到神经网络中的每一个样本都具有相同的尺寸规格; - **增强变换**:采用旋转、缩放和平移等方式增加多样性,提高泛化能力; ```python import numpy as np from scipy.spatial.transform import Rotation as R def augment_data(points, labels=None): """Apply random transformations to point clouds.""" rotation_angle = np.random.uniform() * 2 * np.pi rot_matrix = R.from_euler('z', rotation_angle).as_matrix() points_rotated = np.dot(points, rot_matrix.T) if scale: scales = np.random.uniform(low=0.9, high=1.1, size=(points.shape[0], 1)) points_scaled = points_rotated * scales return points_scaled if not labels else (points_scaled, labels) ``` #### 模型架构选择 考虑到3D数据的特点,PointNet及其改进版本(PointNet++)被广泛应用于分类任务中。这类结构能够直接操作无序集合形式表示的空间坐标系下的离散采样点云,并从中抽取特征向量用于后续预测分析。 #### 训练技巧 - 使用混合精度加速收敛速度的同时减少显存占用; - 应用迁移学习策略初始化权重参数,从而加快优化进程; - 实施早停法防止过拟合现象发生; 尽管存在上述指导方针,具体实施细节还需依据实际应用场景灵活调整。值得注意的是,虽然有部分开源项目提供了一定程度的支持文档和技术支持[^2],但对于特定领域的深入探索往往需要结合最新研究成果不断迭代完善解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值