论文标题
DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization
DNGaussian:使用全局-局部深度归一化优化稀疏视图3D高斯辐射场
论文链接:
https://arxiv.org/abs/2403.06912
论文作者
Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu
内容简介
这篇论文介绍了DNGaussian,这是一个基于3D高斯辐射场的深度正则化框架,用于实现实时、高质量的少样本新视角合成,同时降低成本。
DNGaussian通过深度约束来解决输入视图减少时场景几何退化的问题,并提出了硬深度和软深度正则化以及全局-局部深度归一化技术,以在粗略的单目深度监督下恢复准确的场景几何,同时保持精细的颜色表现。通过在LLFF、DTU和Blender数据集上的广泛实验,DNGaussian在显著降低内存成本、减少训练时间25倍、渲染速度提升3000倍以上的同时,超越了现有最先进方法,实现了可比或更好的结果。