论文标题
Prospective Representation Learning for Non-Exemplar Class-Incremental Learning 面向非示例类增量学习的预见性表征学习
论文链接
Prospective Representation Learning for Non-Exemplar Class-Incremental Learning论文下载
论文作者
Wuxuan Shi, Mang Ye
内容简介
本文提出了一种新的方法——前瞻性表征学习(PRL),旨在解决非示例类增量学习(NECIL)中的灾难性遗忘问题。NECIL要求在不保留旧类样本的情况下,识别旧类和新类。现有方法通常在新任务到来时回顾性地处理旧类和新类之间的冲突,而缺乏旧任务数据使得平衡旧类和新类变得困难。PRL通过在基础阶段压缩当前类的嵌入分布,为未来类保留空间,并在增量阶段将新类特征与旧类原型分开,从而减少新类对旧类的冲击。实验结果表明,PRL在多个基准测试中优于现有的最先进方法,展示了其在增量学习中的有效性和灵活性。
分点关键点
-
前瞻性表征学习(PRL)框架
- PRL通过在基础阶段施加先发制人的嵌入压缩约束,确保当前类的嵌入