Neurlps2024论文解析|Prospective Representation Learning for Non-Exemplar Class-Incremental Learning

论文标题

Prospective Representation Learning for Non-Exemplar Class-Incremental Learning 面向非示例类增量学习的预见性表征学习

论文链接

Prospective Representation Learning for Non-Exemplar Class-Incremental Learning论文下载

论文作者

Wuxuan Shi, Mang Ye

内容简介

本文提出了一种新的方法——前瞻性表征学习(PRL),旨在解决非示例类增量学习(NECIL)中的灾难性遗忘问题。NECIL要求在不保留旧类样本的情况下,识别旧类和新类。现有方法通常在新任务到来时回顾性地处理旧类和新类之间的冲突,而缺乏旧任务数据使得平衡旧类和新类变得困难。PRL通过在基础阶段压缩当前类的嵌入分布,为未来类保留空间,并在增量阶段将新类特征与旧类原型分开,从而减少新类对旧类的冲击。实验结果表明,PRL在多个基准测试中优于现有的最先进方法,展示了其在增量学习中的有效性和灵活性。

在这里插入图片描述

分点关键点

  1. 前瞻性表征学习(PRL)框架

    • PRL通过在基础阶段施加先发制人的嵌入压缩约束,确保当前类的嵌入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值