【参文】GCN(二)

考虑到CNN主要用于提取具有高度意义的统计模式和学习图像和视频等数据中呈现的局部平稳结构,一些新兴研究提出了用于不规则域数据的图CNN(GCNN)。GCNN模型中的一种滤波方法是利用图形中的信号处理理论(Bruna等人,2013年;Sandryhaila和Moura,2013年;Shuman等人,2013年)。给定一个无向连通图,每个顶点都有一个信号或特征向量,定义了一个邻接矩阵(加权或二进制),其中每个条目编码两个顶点上信号向量之间的关系程度(Sandryhaila和Moura,2013)。图的拉普拉斯矩阵(Shuman et al.,2013)或邻接矩阵(Sandryhaila和Moura,2013)可分解为傅里叶基。然后执行图形傅里叶变换,将信号数据从顶点域转换为频域。然后,可以进行图形频谱滤波以放大或衰减某些成分的贡献(Shuman等人,2013)。Defferard等人(2016年)提出了一种快速局部化光谱滤波方法,并将其GCNN模型应用于文本分类,取得了令人满意的结果。Kipf和Welling(2016)采用了类似的局部化光谱滤波器,该滤波器使用一阶近似进一步简化。多引文数据集用于测试半监督学习的GCNN,结果表明,该模型在效率和准确性方面均优于其他此类模型。然而,正如作者所指出的,GCNN的关键缺点是需要人工创建图和预定义邻接矩阵。输入图的质量至关重要(Defferard等人,2016;Kipf,2016)。

1. Spectral Networks and Locally Connected Networks on Graphs

摘要:
卷积神经网络是图像和音频识别任务中极其高效的架构,这要归功于它们能够利用其域内信号类别的局部平移不变性。 在本文中,我们考虑了 CNN 对定义在更一般域上的信号的可能泛化,而无需翻译组的动作。 特别地,我们提出了两种构造,一种基于域的层次聚类,另一种基于图拉普拉斯算子的频谱。 我们通过实验表明,对于低维图,可以学习具有独立于输入大小的多个参数的卷积层,从而产生高效的深度架构。
bib:

@article{2013Spectral,
  title={Spectral Networks and Locally Connected Networks on Graphs},
  author={ Joan Bruna.  and Wojciech Zaremba.  and  Arthur Szlam.  and Yann LeCun. },
  journal={Computer Science},
  year={2013},
  doi={https://arxiv.org/abs/1312.6203},
}

2. Discrete Signal Processing on Graphs

摘要:
在社会环境中,个人通过关系网进行互动。每个人都是相互依赖的复杂网络(或图形)中的一个节点,并生成数据、大量数据。我们通过数据的来源标记数据,或者正式声明,我们通过图的节点索引数据。结果信号(由节点索引的数据)与由有序时间样本或像素索引的时间或图像信号相去甚远。 DSP,离散信号处理,提供了一种全面、优雅和高效的方法来描述、表示、变换、分析、处理或合成这些有序的时间或图像信号。本文扩展到图 DSP 上的信号及其基本原则,包括滤波器、卷积、z 变换、脉冲响应、频谱表示、傅立叶变换、频率响应,并通过对博客进行分类、线性预测和不规则压缩数据来说明图上的 DSP定位气象站,或预测移动服务提供商客户的行为。
bib:

@ARTICLE{2013Discrete,  
author={Sandryhaila, Aliaksei and Moura, José M. F.},  
journal={IEEE Transactions on Signal Processing}, 
  title={Discrete Signal Processing on Graphs},  
   year={2013}, 
    volume={61},  
    number={7},  
    pages={1644-1656}, 
     doi={10.1109/TSP.2013.2238935}}
### Graph Convolutional Network (GCN) 概述 Graph Convolutional Networks (GCNs) 是一种专门用于处理图数据的深度学习模型。这类网络能够有效地捕捉节点之间的关系以及整个图结构中的复杂模式[^1]。 #### 图的重要性 传统机器学习方法通常假设输入样本之间相互独立同分布(i.i.d.),但在许多实际场景下,这种假设并不成立。例如社交网络、推荐系统等领域内的实体间存在复杂的关联性。为了更好地建模这些依赖关系并利用其中蕴含的信息,研究者们提出了基于图的方法来表达对象及其交互方式。通过引入邻接矩阵A描述连接情况,并结合特征向量X刻画顶点属性,使得我们可以构建更加贴近现实世界的表示形式[^2]。 ### 工作原理 GCN 的核心思想是在每一层聚合邻居节点的信息来进行更新操作: \[ H^{(l+1)}=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)}\right)\] 这里 \(H^{(0)}=X\) 表示初始输入特征;\(W^{(l)}\) 代表第 l 层可训练权重参数;而 \(\tilde{A}=A+I_N\) 则是对原始邻接矩阵加上单位阵后的版本,用来考虑自环的影响;最后 \(\tilde{D}\) 定义为度数矩阵【即对角线上元素等于各节点总边数】。激活函数 σ() 可选 ReLU 或其他非线性变换以增加表达能力。 值得注意的是,即便仅采用随机初始化而不经过任何迭代优化过程,由于融入了拓扑结构先验知识的缘故,所得到的结果依然具备一定解释力和区分度[^3]。 ### 应用领域 - **半监督分类**:当仅有部分标签可用时,GCN 能够借助未标记样本间的相似性和局部一致性原则实现高效预测。 - **链接预测**:对于缺失或潜在的关系挖掘任务而言,该技术同样表现出色,因为它可以直接作用于任意形状大小的无向/有向图之上。 - **社区发现与聚类分析**:凭借其强大的表征学习机制,有助于揭示隐藏在网络背后的群体划分规律。 ```python import torch from torch_geometric.nn import GCNConv class Net(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = GCNConv(dataset.num_node_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值