【参文】GCN(二)

考虑到CNN主要用于提取具有高度意义的统计模式和学习图像和视频等数据中呈现的局部平稳结构,一些新兴研究提出了用于不规则域数据的图CNN(GCNN)。GCNN模型中的一种滤波方法是利用图形中的信号处理理论(Bruna等人,2013年;Sandryhaila和Moura,2013年;Shuman等人,2013年)。给定一个无向连通图,每个顶点都有一个信号或特征向量,定义了一个邻接矩阵(加权或二进制),其中每个条目编码两个顶点上信号向量之间的关系程度(Sandryhaila和Moura,2013)。图的拉普拉斯矩阵(Shuman et al.,2013)或邻接矩阵(Sandryhaila和Moura,2013)可分解为傅里叶基。然后执行图形傅里叶变换,将信号数据从顶点域转换为频域。然后,可以进行图形频谱滤波以放大或衰减某些成分的贡献(Shuman等人,2013)。Defferard等人(2016年)提出了一种快速局部化光谱滤波方法,并将其GCNN模型应用于文本分类,取得了令人满意的结果。Kipf和Welling(2016)采用了类似的局部化光谱滤波器,该滤波器使用一阶近似进一步简化。多引文数据集用于测试半监督学习的GCNN,结果表明,该模型在效率和准确性方面均优于其他此类模型。然而,正如作者所指出的,GCNN的关键缺点是需要人工创建图和预定义邻接矩阵。输入图的质量至关重要(Defferard等人,2016;Kipf,2016)。

1. Spectral Networks and Locally Connected Networks on Graphs

摘要:
卷积神经网络是图像和音频识别任务中极其高效的架构,这要归功于它们能够利用其域内信号类别的局部平移不变性。 在本文中,我们考虑了 CNN 对定义在更一般域上的信号的可能泛化,而无需翻译组的动作。 特别地,我们提出了两种构造,一种基于域的层次聚类,另一种基于图拉普拉斯算子的频谱。 我们通过实验表明,对于低维图,可以学习具有独立于输入大小的多个参数的卷积层,从而产生高效的深度架构。
bib:

@article{2013Spectral,
  title={Spectral Networks and Locally Connected Networks on Graphs},
  author={ Joan Bruna.  and Wojciech Zaremba.  and  Arthur Szlam.  and Yann LeCun. },
  journal={Computer Science},
  year={2013},
  doi={https://arxiv.org/abs/1312.6203},
}

2. Discrete Signal Processing on Graphs

摘要:
在社会环境中,个人通过关系网进行互动。每个人都是相互依赖的复杂网络(或图形)中的一个节点,并生成数据、大量数据。我们通过数据的来源标记数据,或者正式声明,我们通过图的节点索引数据。结果信号(由节点索引的数据)与由有序时间样本或像素索引的时间或图像信号相去甚远。 DSP,离散信号处理,提供了一种全面、优雅和高效的方法来描述、表示、变换、分析、处理或合成这些有序的时间或图像信号。本文扩展到图 DSP 上的信号及其基本原则,包括滤波器、卷积、z 变换、脉冲响应、频谱表示、傅立叶变换、频率响应,并通过对博客进行分类、线性预测和不规则压缩数据来说明图上的 DSP定位气象站,或预测移动服务提供商客户的行为。
bib:

@ARTICLE{2013Discrete,  
author={Sandryhaila, Aliaksei and Moura, José M. F.},  
journal={IEEE Transactions on Signal Processing}, 
  title={Discrete Signal Processing on Graphs},  
   year={2013}, 
    volume={61},  
    number={7},  
    pages={1644-1656}, 
     doi={10.1109/TSP.2013.2238935}}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值