连续周期函数的傅里叶级数

本文详细介绍了傅里叶级数的概念,包括其在时域和频域的特性,狄利克雷条件的应用,以及三角函数和指数形式的表示。重点讨论了帕塞瓦尔定理,以及周期性信号的对称性如何影响傅里叶级数的简化。
摘要由CSDN通过智能技术生成

说明

连续周期函数的傅里叶级数,简称傅氏级数。

傅里叶级数在时域上是连续、周期性的;在频率域上是离散、非周期性的。

狄利克雷(Dirichlet)条件

周期为T的任一周期函数f(t),如果满足下列狄利克雷(Dirichlet)条件:

  • 在一个周期内,如果有间断点存在,则间断点的数目应该是有限个;
  • 在一个周期内,只有有限个极大和极小值;
  • 在一个周期内,信号是绝对可积(或平方可积)的,即积分\int_{-T/2}^{T/2}\left | f(t) \right |dt等于有限值。

通常我们遇到的周期性信号都能满足狄利克雷条件。

三角函数形式的傅里叶级数

f(t)可展开为下面三角函数形式的傅里叶级数:

f(t)=a_{0}+\sum_{n=1}^{\infty }(a_{n}\cos n\omega t+b_{n}\sin n\omega t)\; \; \; \; (1-1)

式中,\omega =2\pi /T称为角频率,系数a_{n}b_{n}分别由下式给出:

a_{0}=\frac{1}{T}\int_{-T/2}^{T/2}f(t)\cos n\omega tdt \; \; \; \; \; \; (1-2)

a_{n}=\frac{2}{T}\int_{-T/2}^{T/2}f(t)\cos n\omega tdt;\; \; \; n=0,1,2,\cdots ,\infty \; \; \; \; \; \; (1-3)

b_{n}=\frac{2}{T}\int_{-T/2}^{T/2}f(t)\sin n\omega tdt;\; \; \; n=1,2,\cdots ,\infty \; \; \; \; \; \; (1-4)

从上面得到的(1-1)式表明:任何周期性信号,只要满足狄利克雷条件,就可以分解为直流分量和许多正弦、余弦分量。这些正弦、余弦分量的频率必定是基频(f=1/T)的整数倍。通常把频率为f的分量称为基波,频率为2f,3f,\cdots的分量称为二次谐波、三次谐波、...。

如果将式(1-1)中的同频率项加以合并,可以写成另外一种形式

f(t)=c_{0}+\sum_{n=1}^{\infty }c_{n}\cos (n\omega t+\varphi _{n})\; \; \; \; (1-5)

或者

f(t)=d_{0}+\sum_{n=1}^{\infty }d_{n}\sin (n\omega t+\theta _{n})\; \; \; \; (1-6)

其中各个量之间的关系如下:

\left\{\begin{matrix} a_{0}=c_{0}=d_{0}\\ c_{n}=d_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}\\ a_{n}=c_{n}\cos \varphi _{n}=d_{n}\sin \theta _{n}\\ b_{n}=-c_{n}\sin \varphi _{n}=d_{n}\cos \theta _{n}\\ \tan \theta _{n}=\frac{a_{n}}{b_{n}} \\ \tan \varphi _{n}=-\frac{b_{n}}{a_{n}}\\ (n=1,2,\cdots ) \end{matrix}\right.\; \; \; \; \; (1-7)

指数形式的傅里叶级数

周期函数f(t)还可展开为指数形式的傅里叶级数:

f(t)=\sum_{n=-\infty }^{\infty }F_{n}e^{jn\omega t}\; \; \; \; (2-1)

式中,j为虚数单位,系数F_{n}由下式给出:

F_{n}=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-jn\omega t}dt\; \; \; \; (2-2)

F_{n}与其它系数的关系如下:

\left\{\begin{matrix} F_{0}=c_{0}=d_{0}=a_{0}\\ F_{n}=\left | F_{n} \right |e^{j\varphi _{n}}=\frac{1}{2}(a_{n}-jb_{n})\\ F_{-n}=\left | F_{-n} \right |e^{-j\varphi _{n}}=\frac{1}{2}(a_{n}+jb_{n})\\ \left | F_{n} \right |=\left | F_{-n} \right |=\frac{1}{2}c_{n}=\frac{1}{2}d_{n}=\frac{1}{2}\sqrt{a_{n}^{2}+b_{n}^{2}}\\ \left | F_{n} \right |+\left | F_{-n} \right |=c_{n}\\ F_{n}+F_{-n}=a_{n}\\ b_{n}=j(F_{n}-F_{-n})\\ c_{n}^{2}=d_{n}^{2}=a_{n}^{2}+b_{n}^{2}=4F_{n}F_{-n}\\ (n=1,2,\cdots ) \end{matrix}\right.\; \; \; \; \; \; (2-3)

帕塞瓦尔定理(或帕塞瓦尔方程)

对傅里叶级数(1-1)式或者(2-1)式的两边平方,并在一个周期内进行积分,再利用三角函数及复指数函数的正交性,可以得到周期性信号f(t)的平均功率P与傅里叶系数的关系如下:

P=\overline{f^{2}(t)}=\frac{1}{T}\int_{-T/2}^{T/2}f^{2}(t)dt

=a_{0}^{2}+\frac{1}{2}\sum_{n=1}^{\infty }(a_{n}^{2}+b_{n}^{2})

=c_{0}^{2}+\frac{1}{2}\sum_{n=1}^{\infty }c_{n}^{2}

=\sum_{n=-\infty }^{\infty }\left | F_{n} \right |^{2}\; \; \; \; \; (3-1)

上式表明,周期性信号的平均功率等于傅里叶级数展开式中各谐波分量有效值的平方和,也意味着时域和频域的能量守恒。这个式子称为帕塞瓦尔定理(或帕塞瓦尔方程)

函数的对称性与傅里叶系数的关系

把周期性信号f(t)展开为傅里叶级数的时候,如果f(t)是实函数并且它的波形满足某种对称性,则在傅里叶级数中有些项将不出现。

波形的对称性有两类:一类是对整周期对称,例如偶函数和奇函数;另外一类是对半周期对称,例如奇谐函数。对整周期对称决定级数中只可能有正弦项或余弦项,而对半周期对称决定级数中只可能含有偶次项或奇次项。

周期函数f(t)具有某种对称性情况下傅里叶级数的简化:

对称性傅氏级数特点a_{n}b_{n}
偶函数:f(t)=f(-t)只有余弦项\frac{4}{T}\int_{0}^{T/2}f(t)\cos n\omega tdt0
奇函数:f(t)=-f(-t)只有正弦项0\frac{4}{T}\int_{0}^{T/2}f(t)\sin n\omega tdt

偶谐函数(也称半周期重叠函数):只有偶次谐波:

f(t\pm \frac{T}{2})=f(t)

只有偶数n\frac{4}{T}\int_{0}^{T/2}f(t)\cos n\omega tdt\frac{4}{T}\int_{0}^{T/2}f(t)\sin n\omega tdt

奇谐函数(也称半波对称函数):只有奇次谐波:

f(t\pm \frac{T}{2})=-f(t)

只有奇数n\frac{4}{T}\int_{0}^{T/2}f(t)\cos n\omega tdt\frac{4}{T}\int_{0}^{T/2}f(t)\sin n\omega tdt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值