12.8 一般周期函数的傅里叶级数

 

12.8 一般周期函数的傅里叶级数

一、周期为 2L2L2L 的周期函数的傅里叶级数

上节所讨论的周期函数都是以 2π2\pi2π 为周期的,但实际问题中所遇到的周期函数,其周期不一定是 2π2\pi2π。例如上节中提到的矩形波,它的周期是 TTT。因此,本节我们讨论周期为 2L2L2L 的周期函数的傅里叶级数。根据上节讨论的结果,经过自变量的变量代换,可得下面的定理:

定理

设周期为 2L2L2L 的周期函数 f(x)f(x)f(x) 满足收敛定理的条件,则它的傅里叶级数展开式为:

其中,

特殊情况

当 f(x)f(x)f(x) 为奇函数时

其中,

当 f(x)f(x)f(x) 为偶函数时

其中,

例 1:周期为 4 的周期函数的傅里叶级数

题目

设 f(x)f(x)f(x) 是周期为 4 的周期函数,它在 (−2,2)(-2, 2)(−2,2) 上的表达式为:

将 f(x)f(x)f(x) 展开成傅里叶级数,并作出级数的和函数的图形。

解答

这时 L=2L = 2L=2,按公式计算傅里叶系数:

  1. 计算 ana_nan​:

由于 f(x)f(x)f(x) 在区间 (−2,0)(-2, 0)(−2,0) 为 0,在 (0,2)(0, 2)(0,2) 为 hhh,所以:

由于 sin⁡nπ=0\sin n\pi = 0sinnπ=0,所以:

  1. 计算 a0a_0a0​:

  1. 计算 bnb_nbn​:

同样,由于 f(x)f(x)f(x) 在区间 (−2,0)(-2, 0)(−2,0) 为 0,在 (0,2)(0, 2)(0,2) 为 hhh,所以:

当 nnn 为偶数时,bn=0b_n = 0bn​=0;当 nnn 为奇数时,bn=4hnπb_n = \frac{4h}{n\pi}bn​=nπ4h​。

综上,傅里叶级数展开式为:

级数的和函数的图形

根据上面的计算结果,画出傅里叶级数的和函数图形如下:

数学分析与理解

这个例题告诉我们,通过傅里叶级数可以将一个周期为 2L2L2L 的函数展开成既含有正弦项又含有余弦项的级数。在这个例子中,f(x)f(x)f(x) 是一个周期为 4 的函数,其傅里叶级数只含有正弦项,这是因为函数在区间内是奇对称的。傅里叶级数的展开式对于分析周期函数的性质和构造非常有用。

例 2:函数的正弦级数和余弦级数

题目

将如图所示的函数 M(x)M(x)M(x) 分别展开成正弦级数和余弦级数。

解答

设 M(x)M(x)M(x) 定义在 [0,1][0, 1][0,1] 上。

正弦级数展开

对函数 M(x)M(x)M(x) 作奇延拓,按公式计算延拓后的傅里叶系数:

由于 M(x)=xM(x) = xM(x)=x:

用分部积分法:

当 nnn 为偶数时,bn=0b_n = 0bn​=0;当 nnn 为奇数时,bn=4nπb_n = \frac{4}{n\pi}bn​=nπ4​。

因此,正弦级数展开式为:

余弦级数展开

对函数 M(x)M(x)M(x) 作偶延拓,计算傅里叶系数:

由于 M(x)=xM(x) = xM(x)=x:

用分部积分法:

当 nnn 为偶数时,an=0a_n = 0an​=0;当 nnn 为奇数时,an=4n2π2a_n = \frac{4}{n^2\pi^2}an​=n2π24​。

因此,余弦级数展开式为:

数学分析与理解

通过例 2,我们可以看到,对于定义在 [0,1][0, 1][0,1] 上的函数 M(x)M(x)M(x),通过奇延拓和偶延拓,可以分别得到其正弦级数和余弦级数展开。正弦级数只含有正弦项,适用于描述奇函数,而余弦级数只含有余弦项,适用于描述偶函数。这种方法在实际应用中非常重要,特别是在处理周期延拓问题时,可以灵活地选择延拓方式,从而简化问题的分析和求解过程。

 

 

 

 

 

 

 

二、傅里叶级数的复数形式

傅里叶级数还可以用复数形式表示,这在电子技术中经常应用。设周期为 2L2L2L 的周期函数 f(x)f(x)f(x) 的傅里叶级数为:

其中系数 ana_nan​ 和 bnb_nbn​ 为:

利用欧拉公式:

将傅里叶级数改写为复数形式:

记:

则:

这样,傅里叶级数的复数形式为:

其中:

傅里叶级数的两种形式本质上是一样的,但复数形式比较简洁,且只用一个算式计算系数。

例 3:矩形波的复数形式傅里叶级数

题目

将宽为 2L2L2L、高为 hhh、周期为 TTT 的矩形波展开成复数形式的傅里叶级数。

解答

在一个周期内,矩形波的函数表达式为:

按公式:

其中 T=2LT = 2LT=2L。

计算傅里叶系数 cnc_ncn​:

由于 sin⁡(nπ)=0\sin(n\pi) = 0sin(nπ)=0,非零的傅里叶系数只出现在奇数倍数的谐波上:

因此,矩形波的傅里叶级数为:

数学分析与理解

通过例 3,我们看到傅里叶级数的复数形式不仅简洁,而且在处理复杂波形时非常有效。它将周期函数展开为一系列复指数函数的和,使得在电子技术和信号处理等领域的应用更加方便。通过复数形式的傅里叶级数,我们能够更直观地理解信号的频谱组成及其谐波特性,这在分析和设计电路时尤为重要。

 

 

 

 

  • 23
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值