剖析连续时间傅里叶级数

本文深入探讨傅里叶级数,从信号的正交分解出发,详细阐述了连续时间傅里叶级数的三角级数和指数形式,并通过实例分析了方波信号的合成与分解过程,揭示了傅里叶级数在信号处理中的核心作用。
摘要由CSDN通过智能技术生成

1. 前言

  傅里叶级数是整个信号处理学科领域的基石,开创了从传统时域分析到频域分析的先河,使得众多在时域难以分析的信号在频域可以轻松解决。傅里叶级数是在均方误差准则下对信号的最佳近似,是信号在一组完备正交基上的投影
  笔者先从空间向量的几何分解的角度切入,类比解释了为什么要对信号进行正交分解,以及在均方误差的准则下如何求得信号在正交基上的投影分量。由于指数信号具有先天的优势,指数信号的导数、积分、求和、减法都是指数信号,指数信号具有高保真度,因此选择虚指数完备正交基作为信号投影。

2. 信号的正交分解

2.1 矢量的几何分解

  为了理解对信号进行分解的目的,我们先从几何学的角度,体会下平面矢量以及空间矢量的分解。矢量正交定义如下如图1所示,(a) A=c1vx+c2vy ,即将平面矢量 A 分解成正交的 x 轴和 y 轴的单位矢量;(b) A=c1vx+c2vy+c3vz ,即将空间向量 A 分解成正交的 x 轴, y 轴和 z 轴的单位矢量。



图1:(a)平面的矢量分解 (b)空间矢量分解

为此,我们要先清楚,什么是矢量正交。矢量正交定义为:

存在矢量 A B ,若有满足 AB=0A,B0 ,则矢量 A B 正交。
 
  将空间矢量分解到笛卡尔坐标系,是为了方便计算。为了方便理解,我们再举一个高中物理的例子,如图所示,固定斜面上有一小球,小球与斜面的接触面绝对光滑,现在要研究小球沿斜面的加速度


这里写图片描述
图2:光滑斜面小球中立分解示意图

这样得到小球沿着斜面的加速度为 a=gsinθ
  可以看到通过矢量的正交分解,我们可以轻松的求出小球沿着斜面的加速度。 将空间矢量正交分解的概念推广到信号空间,在信号空间中找到若干相互正交的信号为基本信号,使得任意信号可以表示成这组正交信号的线性组合。

2. 2 信号正交的几个基本概念

  1. 信号的正交定义
    定义在区间 (t1,t2) 上的两个函数 φ1(t) φ2(t) ,如果满足
    t2t1φ1(t)φ2(t)dt=0

    则称函数 φ1(t) φ2(t) 在区间 (t1,t2) 上正交。
  2. 正交函数集
    如果有 n 个函数 {φ1(t),φ2(t),,φn(t)} 构成一个函数集合,若函数集合在 (t1,t2) 上满足
    t2t1φi(t)φj(t)dt={ 0ijKi=j

    K 是常数,则称此函数集为正交函数集。
  3. 完备正交集
    如果在正交函数集 {φ1(t),φ2(t),,φn(t)} 之外,不存在函数 ϕ(t) 满足等式
    t2t1φi(t)ϕ(t)dt=0 (i=1,2,n)

    则称此正交函数集为完备正交集。常见的完备正交集合有三角函数集、虚指数集合。
    【例1】证明三角函数集 { 1,cos(nωot),sin(nωot)} (n=1,2,3,,n,) 是正交函数集
    证:
    to+Ttocos(mωot)cos(nωot)dtto+Ttosin(mωot)sin(nωot)dtto+Ttosin(mωot)cos(nωot)dt=0mnT2m=n=0Tmn=0mn T2m=n0=0

    【注】另外,我们对上述证明中的一些小细节进行解释。
    证明:如果函数 f(t) 是周期为 T 的周期信号,则有 T+aaf(t)dt=T0f(t)dt
    证:根据定积分的可拆性
    T+aaf(t)dt=0af(t)dt+T0f(t)dt+T+aTf(t)dt

    等式右边第三项令 u=tT
    T+aaf(t)dt=a0f(u)du=a0f(t)dt=0af(t)dt

    因此
    T+aaf(t)dt=T0f(t)dt

    证毕。

2.3 信号的正交分解

N 个函数 {φ1(t),φ2(t)

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值