Stewart六自由度正解、逆解计算-C#和Matlab程序

目录

一、Stewart并联六自由度正解计算   

(一)概况     

(二)Matlab正解计算

1、参考程序一

2、参考程序二

(三)C#程序正解计算

1、工程下载链接

2、正解运行计算

(四)正程序打包下载程序合集

二、逆解计算

(一)Matlab逆解计算

1、Matlab逆解计算程序一

2、Matlab逆解计算程序二

3、Matlab逆解计算程序三

(二)C#程序逆解计算

1、工程下载链接

2、逆解运行计算

(三)逆解程序打包下载程序合集


注意:本测试只是计算方法展示,并未涉及模型坐标系参数、矩阵参数等。如需要详细学习了解,请参照博客:Stewart六自由度平台正反解算法_六自由度 stewart 平台运动学正解-CSDN博客

一、Stewart并联六自由度正解计算   

(一)概况     

Stewart平台,也称为六自由度并联机构,是一种具有六个自由度(三个平移自由度和三个旋转自由度)的机械结构。它由一个固定的底座和一个可移动的平台组成,通过六个连杆连接底座和平台。

要进行Stewart平台的正解计算,即已知各个连杆的长度和底座上的固定点坐标,求解平台上的移动点坐标。正解计算可以通过以下步骤完成:

1. 定义底座和平台的坐标系。选择一个适当的坐标系,并将底座和平台的坐标系与之关联。

2. 确定底座上的固定点坐标。假设底座上有六个固定点,分别记作P1, P2, P3, P4, P5, P6,并给出它们在底座坐标系中的坐标。

3. 确定各个连杆的长度。假设有六个连杆,分别记作L1, L2, L3, L4, L5, L6,并给出它们的长度。

4. 确定平台上的移动点坐标。假设平台上有一个移动点M,并给出它在平台坐标系中的坐标。

5. 利用三角关系计算各个连杆的角度。根据已知的底座固定点坐标、连杆长度和平台上的移动点坐标,可以使用三角关系计算出各个连杆的角度。

6. 利用旋转矩阵计算平台的位姿。根据各个连杆的角度,可以构建旋转矩阵,然后将平台上的移动点坐标转换到底座坐标系中,从而得到平台的位姿。

以上步骤仅为大致的计算过程,具体实现时需要根据具体的连杆结构和坐标系选择进行适当的数学推导和计算。在实际应用中,还需要考虑误差校正、奇异姿态等问题。

请注意,Stewart平台的正解计算相对复杂,需要较强的数学和几何知识。如果你需要更详细和精确的计算结果,建议参考相关的文献或专业机器人学教材,或者使用专门的机器人仿真软件进行计算和分析。
 

(二)Matlab正解计算

1、参考程序一

      以下是一个使用MATLAB编写的Stewart并联六自由度正解计算的示例程序:

%这个程序计算了Stewart并联六自由度的正解,其中腿的长度 L 和腿的旋转角度 theta 是输入参数。
%程序通过循环计算每个腿的末端点坐标,并使用这些坐标计算平台的旋转矩阵。
%最后,程序打印出腿的末端点坐标和平台的旋转矩阵。
%你可以根据需要修改腿的长度和旋转角度,然后运行程序,即可得到相应的结果。

% 输入参数
L = [1, 1, 1, 1, 1, 1]; % 腿的长度
theta = [0, 0, 0, 0, 0, 0]; % 腿的旋转角度(单位:弧度)

% 计算腿的末端点坐标
P = zeros(3, 6); % 存储末端点坐标
for i = 1:6
    P(:, i) = [L(i)*cos(theta(i)); L(i)*sin(theta(i)); 0];
end

% 计算平台的旋转矩阵
R = zeros(3, 3); % 存储旋转矩阵
for i = 1:6
    R = R + cos(theta(i))*eye(3) + (1 - cos(theta(i)))*(P(:, i)*P(:, i)') - sin(theta(i))*skewSymmetricMatrix(P(:, i));
end

% 打印结果
disp("腿的末端点坐标:");
disp(P);
disp("平台的旋转矩阵:");
disp(R);

% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)
    M = [  0    -v(3)   v(2);
           v(3)   0    -v(1);
          -v(2)  v(1)    0  ];
end

计算结果

2、参考程序二

% 输入参数
L = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]; % 腿的长度
theta = [pi/6, pi/4, pi/3, pi/6, pi/4, pi/3]; % 腿的旋转角度

% 计算腿的末端点坐标
P = zeros(3, 6); % 存储末端点坐标
for i = 1:6
    P(:, i) = [L(i)*cos(theta(i)); L(i)*sin(theta(i)); 0];
end

% 计算平台的旋转矩阵
R = zeros(3, 3); % 存储旋转矩阵
for i = 1:6
    R = R + cos(theta(i))*eye(3) + (1 - cos(theta(i)))*(P(:, i)*P(:, i)') - sin(theta(i))*skewSymmetricMatrix(P(:, i));
end

% 打印结果
disp("腿的末端点坐标:");
disp(P);
disp("平台的旋转矩阵:");
disp(R);

% 绘制图形
figure;
hold on;
grid on;
axis equal;
xlabel('X');
ylabel('Y');
zlabel('Z');

% 绘制腿的末端点
scatter3(P(1,:), P(2,:), P(3,:), 'filled');

% 绘制平台
platform = [0, 1, 1, 0, 0; 0, 0, 1, 1, 0; 0, 0, 0, 0, 0];
platform = R * platform;
patch(platform(1,:), platform(2,:), platform(3,:), 'r');

% 绘制连线
for i = 1:6
    line([0, P(1,i)], [0, P(2,i)], [0, P(3,i)], 'Color', 'b');
end

% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)
    M = [  0    -v(3)   v(2);
           v(3)   0    -v(1);
          -v(2)  v(1)    0  ];
end

计算结果

(三)C#程序正解计算

1、工程下载链接

工程下载链接:

https://download.csdn.net/download/panjinliang066333/88421740

2、正解运行计算

给定下平台顶点坐标、六个连杆长度和角度,去计算旋转矩阵和位置矩阵。

以下是一个使用C#编写的Stewart并联六自由度正解计算的示例程序:

主运行程序

运行结果

在上述示例程序中,我们定义了底座上的固定点坐标、连杆长度和平台上的移动点坐标,并调用`StewartForwardKinematics`方法计算平台的位置坐标和姿态(旋转矩阵)。最后,我们将结果显示在控制台中。

请注意,这只是一个简化的示例程序,仅用于演示Stewart并联六自由度正解计算的基本思路。在实际应用中,可能需要考虑更多的细节和特殊情况,例如奇异姿态、误差校正等。如果需要更精确和完整的计算,建议参考相关的机器人学文献或专业软件。
 

(四)正程序打包下载程序合集

下载链接:

https://download.csdn.net/download/panjinliang066333/88421740

二、逆解计算

Stewart平台的逆解计算是指根据给定的目标位置和姿态,求解平台上各个执行器的长度和角度。逆解计算可以使用数值方法或解析方法进行。

(一)Matlab逆解计算

1、Matlab逆解计算程序一



%逆解计算

L1=0.5;
L2=0.5;
L3=0.5;
L4=0.5;
L5=0.5;
L6=0.5;

R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;

P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
L = [L1, L2, L3, L4, L5, L6]; % 腿的长度
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标


% 计算基座坐标系到平台坐标系的转换矩阵
T = [R, zeros(3,1); 0 0 0 1];

% 计算腿的旋转角度
theta = zeros(1, 6); % 存储腿的旋转角度
for i = 1:6
    % 计算腿的末端点在基座坐标系下的坐标
    P_base = T \ [P(:, i); 1];
    P_base = P_base(1:3);
    
    % 计算腿的旋转轴
    a = L(i) * R(:, 3);
    
    % 计算腿的末端点在基座坐标系下在旋转轴方向上的投影
    b = dot(P_base, a) * a;
    
    % 计算腿的末端点在基座坐标系下在旋转轴垂直方向上的投影
    c = P_base - b;
    
    % 计算腿的旋转角度
    theta(i) = atan2(norm(cross(a, c)), dot(a, c));
end

% 打印结果
disp("腿的旋转角度:");
disp(theta);

% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)
    M = [  0    -v(3)   v(2);
           v(3)   0    -v(1);
          -v(2)  v(1)    0  ];
end

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序首先计算基座坐标系到平台坐标系的转换矩阵 T,然后根据逆运动学的原理,计算每个腿的旋转角度 theta

计算过程中,程序首先将腿的末端点坐标转换到基座坐标系下,然后计算腿的旋转轴和末端点在旋转轴方向上的投影。最后,根据旋转轴和投影的关系,计算腿的旋转角度。

请注意,这只是一个简单的示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可能需要根据你的应用场景进行适当的修改和扩展。

 运行结果

2、Matlab逆解计算程序二


%逆解计算

R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;

P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标

% 计算腿的长度
L = zeros(1, 6); % 存储腿的长度
for i = 1:6
    fprintf("计算第 %d 条腿的长度:\n", i);
    
    % 步骤1: 计算 a_i
    a = R(:, 3);
    fprintf("步骤1: a_%d = R(:, 3) =\n", i);
    disp(a);
    
    % 步骤2: 计算 b_i
    b = P(:, i);
    fprintf("步骤2: b_%d = P%d =\n", i, i);
    disp(b);
    
    % 步骤3: 计算 L_i
    L(i) = norm(b - a);
    fprintf("步骤3: L_%d = norm(b_%d - a_%d) = %.4f\n", i, i, i, L(i));
    
    fprintf("\n");
end

% 打印结果
disp("腿的长度:");
disp(L);

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序会按照步骤计算每个腿的长度,并给出每个步骤的中间结果。

请注意,这只是一个示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可以根据需要修改程序,添加额外的计算步骤或输出结果。

计算结果

3、Matlab逆解计算程序三


%逆解计算

R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;

P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标

% 计算腿的长度
L = zeros(1, 6); % 存储腿的长度
for i = 1:6
    fprintf("计算第 %d 条腿的长度:\n", i);
    
    % 步骤1: 计算 a_i
    a = R(:, 3);
    fprintf("步骤1: a_%d = R(:, 3) =\n", i);
    disp(a);
    
    % 步骤2: 计算 b_i
    b = P(:, i);
    fprintf("步骤2: b_%d = P%d =\n", i, i);
    disp(b);
    
    % 步骤3: 计算 L_i
    L(i) = norm(b - a);
    fprintf("步骤3: L_%d = norm(b_%d - a_%d) = %.4f\n", i, i, i, L(i));
    
    fprintf("\n");
end

% 打印结果
disp("腿的长度:");
disp(L);

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序会按照步骤计算每个腿的角度和长度,并给出每个步骤的中间结果。

请注意,这只是一个示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可以根据需要修改程序,添加额外的计算步骤或输出结果。

程序运行过程

结果

(二)C#程序逆解计算

1、工程下载链接

工程下载链接:

https://download.csdn.net/download/panjinliang066333/88422020

2、逆解运行计算

给定下平台顶点坐标、六个连杆长度和角度,去计算旋转矩阵和位置矩阵。

以下是一个使用C#编写的Stewart并联六自由度正解计算的示例程序:

主运行程序

程序运行结果

(三)逆解程序打包下载程序合集

下载链接:

https://download.csdn.net/download/panjinliang066333/88422020

### 实现Stewart平台六自由度正解MATLAB代码 对于具有六个自由度(6DOF)的Stewart平台,其正向运动学涉及计算给定各连杆长度时平台的确切位置姿态。考虑到该系统的复杂性非线性特性,求过程往往依赖于迭代算法或数值方法来逼近真实。 下面是一个用于Stewart平台6DOF正向运动学问题的基础MATLAB脚本示例: ```matlab function [pos, orientation] = stewart_platform_forward_kinematics(base_points, platform_points, link_lengths) % 输入参数说明: % base_points - 基座上连接点坐标 (3x6矩阵),每列代表一个基座上的固定点[x,y,z] % platform_points - 平台初始状态下的相对应移动点坐标 (3x6矩阵), 同样地,每列为一点 % link_lengths - 连接两组对应点之间的距离矢量 (1x6数组) % 初始化变量 pos = zeros(3, 1); % 存储最终得到的位置信息[X;Y;Z] orientation = eye(3); % 初始假设平台保持水平方向不变 % 定义优化目标函数 fun = @(p) sum((sqrt(sum(bsxfun(@minus, ... bsxfun(@plus, p(1:3)', rotation_matrix(p(4:6))*platform_points'),... base_points).^2)) - link_lengths).^2); % 使用fminsearch进行最小化搜索最优 options = optimset('Display', 'off'); result = fminsearch(fun,[0;0;0;0;0;0],options); % 更新输出结果 pos = result(1:3); orientation = rotation_matrix(result(4:6)); end function R = rotation_matrix(euler_angles) % 将欧拉角转换成旋转矩阵 phi = euler_angles(1); theta = euler_angles(2); psi = euler_angles(3); Rx = [1 , 0 , 0; 0 , cos(phi), -sin(phi); 0 , sin(phi), cos(phi)]; Ry = [cos(theta), 0 , sin(theta); 0 , 1 , 0; -sin(theta), 0 , cos(theta)]; Rz = [cos(psi) , -sin(psi) , 0; sin(psi) , cos(psi) , 0; 0 , 0 , 1]; R = Rz*Ry*Rx; end ``` 此段程序定义了一个名为`stewart_platform_forward_kinematics`的功能函数,它接收三个输入参数——基座上的六个固定点坐标、平台上对应的六个活动点坐标以及这十二个点间连线的实际测量长度。通过构建并最小化误差平方作为代价函数,在此基础上利用MATLAB内置的最优化工具箱中的`fminsearch()`来进行全局寻优操作,从而获得使理论模型与实际情况最为接近的一组可能取值组合[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Big_潘大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值