一、ICP
迭代最接近点(ICP):给定两个点集。估计R,t以对齐两个点。
- 找到点的对应关系
- 估算R,t
- 基于R,t,计算误差和分数
- 重复执行上述步骤直到收敛
传统ICP:根据距离进行计算,最近的点认为是具有匹配关系的点[参考]
icp缺点:
- 算法收敛于局部最小误差。
- 噪声或异常数据可能导致算法无法收敛或错误。
- 在进行ICP算法第一步要确定一个迭代初值,选取的初值将对最后配准结果产生重要的影响,如果初值选择不合适,算法可能就会限入局部最优。
粗配准,即点云的初始配准,为精匹配提供一个旋转平移矩阵的初值,将两个位置不同的点云尽可能地对齐[参考]。