ICP算法

一、ICP

迭代最接近点(ICP):给定两个点集。估计R,t以对齐两个点。

  • 找到点的对应关系
  • 估算R,t
  • 基于R,t,计算误差和分数
  • 重复执行上述步骤直到收敛

传统ICP:根据距离进行计算,最近的点认为是具有匹配关系的点[参考]

 

icp缺点:

  • 算法收敛于局部最小误差。
  • 噪声或异常数据可能导致算法无法收敛或错误。
  • 在进行ICP算法第一步要确定一个迭代初值,选取的初值将对最后配准结果产生重要的影响,如果初值选择不合适,算法可能就会限入局部最优。

粗配准,即点云的初始配准,为精匹配提供一个旋转平移矩阵的初值,将两个位置不同的点云尽可能地对齐[参考]。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值