【光电融合集成电路制造与封测】第四讲:扩散工艺,扩散的类型,恒定表面源扩散,限定表面源扩散,硼扩散


关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

目录

回顾:晶体管工艺中某中间流程

扩散定义

热扩散工艺

扩散类型

扩散类型:替位式扩散

扩散类型:填隙式扩散

扩散类型:替位-填隙式扩散

扩散方程

菲克第一扩散定律

菲克第二扩散定律

杂质的扩散参杂

恒定表面源扩散:

限定表面源扩散:

影响杂质分布的其它因素

1)点缺陷

(2)氧化增强扩散

(3)发射区推进效应

(4)横向扩散效应

扩散杂质源

常用杂质的扩散工艺

做个习题练练手呗


回顾:晶体管工艺中某中间流程

扩散定义

扩散(Diffusion)是一种自然现象,是由物质自身的热运动引起的,运动的结果 是使浓度分布区域均匀。

热扩散工艺

在高温(约1000℃),P型或N型杂质气氛中,使杂质向衬底硅片的确定区域内扩散,达到一定浓度,实现半导体定域、定量参杂的一种工艺方法。

扩散类型

替位式扩散:主要是ⅢA族和VA族,如Al、B、Ga、In、P、Sb、As等

填隙式扩散:主要是IA族和VⅢA族元素,如Na、K、Li、H、Ar等

填隙-替位式扩散:大多数过渡元素,如Au、Fe、Cu、Pt、Ni、Ag等

扩散类型:替位式扩散

扩散类型:填隙式扩散

扩散类型:替位-填隙式扩散

扩散方程

菲克第一扩散定律

单位时间内,通过垂直于扩散方向的单位面积上的扩散物质流量为扩散通量, 用 J 表示,单位为kg/(cm^2·s),其与该截面处的浓度梯度成正比。

D 为扩散系数;C 为扩散物质的体积浓度。

菲克第二扩散定律

在非稳态扩散过程中,在距离 x 处,杂质原子浓度随扩散时间的变化率等于 扩散通量随距离变化率的负值,即

杂质的扩散参杂

恒定表面源扩散:

在扩散过程中,硅片表面的杂质浓度Cs始终保持不变。将硅片处于恒定浓度的杂质氛围中,杂质扩散到硅表面很薄的表层,目的是预先硅扩散窗口掺入一定剂量的杂质。

初始条件:C(x, 0)=0, t=0;

边界条件:C(0, t)=Cs, x=0 C(∞, t)=0

求解扩散方程可得:

恒定表面源扩散,其表面杂质浓度基本上由该杂质在扩散温度(900~1200℃)下的固 溶度所决定,而在 900~1200℃的温度范围内,固溶度随温度变化不大。可见恒 定表面源扩散,很难通过改变温度来达到控制表面浓度的目的,这也是该扩散方法的不足之处。

限定表面源扩散:

在扩散过程中硅片外部无杂质的环境氛围,杂质源限定于扩散前

淀积在硅片表面极薄层内的杂质总量Q,扩散过程中Q为常量,依靠这些有限的杂

质向硅片内进行的扩散,目的是使杂质在硅中形成一定的分布或获得一定的结深。

两步扩散工艺: 恒定表面源扩散 ➕ 限定表面源扩散

影响杂质分布的其它因素

1)点缺陷

空位:扩散系数和激活能与空位的荷电状态有关

间隙:“踢出”效应影响扩散速度

(2)氧化增强扩散

在热氧化过程中原存在硅内的某些掺杂原子显现出更高的扩散性,称为氧化增强扩散(Oxidation Enhanced Diffusion, OED)。

(3)发射区推进效应

在NPN窄基区晶体管制造中,如果基区和发射区分别扩硼和扩磷,则发现在发射区正下方的基区(内基区)要比不在发射区正下方的基区(外基区)深,即在发射区正下方硼的扩散有了明显的增强。

(4)横向扩散效应

扩散杂质源

扩散杂质源:杂质源为气态

气态杂质源多为杂质的氢化物或者卤化物,这些气体的毒性很大,而且易燃易炸,操作上要十分小心,实际生产中很少采用。

液态源扩散:杂质源为液态

系统简单,操作方便,生产效率高,重复性和均匀性都较好,但它受温度,时间,流量,杂质源的液面大小及系统是否漏气等外界因素的影响较大,是目前使用较广泛的一种方法。

固态源扩散:杂质源为固态

固态源用法便利,对设备要求不高,操作与液态源基本相同,生产效率高,所以也是应用较多的一种方法(特别是硼扩散方面)。但源片易吸潮变质,在扩散温度较高时,还容易变形,这时就不如液态源扩散优越。

常用杂质的扩散工艺

硼扩散

工艺原理

工艺流程:清洗》预积淀》漂硼硅玻璃》再分布》测方块电阻

清洗:光刻出扩散窗口,并清洗

预淀积:恒定源扩散。硼源在炉内与炉子一起升温,通入氮气作为保护气,

漂硼硅玻璃:预淀积后的扩散窗口表面有薄薄的一层硼硅玻璃,应用HF去除硼硅玻璃。

再分布:限定源扩散。

测方块电阻:通过测方块电阻来了解掺杂情况。

磷扩散

做个习题练练手呗

### 集成电路封装测试智能制造概述 集成电路封装测试作为半导体产业链的重要组成部分,在现代电子工业中扮演着至关重要的角色。随着SiP(系统级封装)及先进封装技术的发展,封装测试不仅限于简单的物理保护功能,还涉及到复杂的电气性能优化以及可靠性保障。 #### 封装测试的技术演进 传统上,封装测试被认为具有较低的技术门槛和技术复杂度;然而,近年来由于市场需求的变化和技术进步的影响,这一领域正经历深刻变革。特别是为了适应电子产品日益增长的小型化、轻量化和高密度集成的需求,行业逐渐转向采用更为先进的封装工艺[^2]。 这些新型封装形式如BGA (球栅阵列)、QFN (四方扁平无引脚),尤其是2.5D/3D堆叠结构、晶圆级芯片规模封装(WLCSP) 和扇出型封装(Fan-out),它们能够提供更多的输入输出接口(I/Os), 同时减小产品体积并降低成本。这标志着封装不再仅仅是制造过程的一个末端步骤,而是成为提升整体器件性能的关键因素之一。 #### 智能制造在IC封测的应用 面对上述挑战和发展机遇,引入智能化手段来改进现有流程变得尤为必要。通过利用大数据分析、机器学习算法以及其他自动化工具,可以显著提高生产效率和服务质量: - **预测性维护**:借助传感器收集的数据实时监控设备状态,并运用AI模型提前预警潜在故障点,从而减少停机时间。 - **良率管理**:通过对历史数据的学习建立缺陷检测机制,快速定位问题根以便及时调整参数设置,进而改善最终产品的合格率。 - **供应链协同**:加强上下游企业间的信息共享平台建设,促进资合理配置物流配送速度加快,降低库存压力的同时提高了响应市场的灵活性。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 假设有一个包含封装过程中各种特征及其对应良品标签的数据集df X = df.drop('yield', axis=1).values # 特征矩阵 y = df['yield'].values # 目标向量 # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 构建逻辑回归分类器用于预测良品率 clf = LogisticRegression().fit(X_train, y_train) ``` 此代码片段展示了如何基于过往记录构建一个简单线性模型来进行良品率预估,实际应用场景下可能还需要考虑更多维度的因素以确保准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值