Anomaly/Out-Of-Distribution(OOD) Detection 的常见方法

这篇博客探讨了深度学习中异常检测的重要性和应用,重点介绍了两种方法:MSP(最大Softmax概率)和ODIN。MSP利用网络的Softmax层最大概率来区分内分布(ID)和异常分布(OOD)样本,而ODIN则通过热度缩放和样本扰动来增强区分度。这两种方法在多种任务中显示出了有效检测异常的能力,为解决泛化性问题提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

Anomaly Detection or Out-OF-Distribution Detection异常检测,是从一堆样本中选出被错误分类或在测试集分布以外的样本。这一定义已经早早地出现在异常检测的经典文章,MSP,中。而异常检测作为一种思想已经被应用于很多不同的领域,如物体检测,语义分割,视频异常检测、语音识别等,而通用的异常检测本身近几年也在不断地出现新的方法。由于近几年算法的落地中逐步出现越来越多的泛化性问题,异常检测也被逐渐被人们所关注。我个人理解,异常检测是一种不同于深度学习数据驱动方法的算法思想,可以巧妙地解决实际应用中传统数据驱动方法所难以解决的问题,因此的确有非常大的研究价值。

MSP - Maximum Softmax Probabilities

A Baseline For Detecting Misclassified And Out-Of-Distribution Examples In Neural Networks - ICLR 2017

MSP是异常检测工作中具有里程碑意义的一篇文章,其做法与思想非常简单,就是用网络的Softmax层输出的最大概率(MSP)作为判断样本是否是OOD或Anomaly的依据。如果网络对某样本的分类无法得到明确的结论,会生成各分类类别概率相近的结果,因此对OOD样本,网络偏向于生成较小的MSP,而对于ID(In-distribution)样本,网络偏向于生成较大的MSP。这样一来,便可以用过MSP判断某样本是OOD还是ID。
虽然算法思想很

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值