概念
Anomaly Detection or Out-OF-Distribution Detection,异常检测,是从一堆样本中选出被错误分类或在测试集分布以外的样本。这一定义已经早早地出现在异常检测的经典文章,MSP,中。而异常检测作为一种思想已经被应用于很多不同的领域,如物体检测,语义分割,视频异常检测、语音识别等,而通用的异常检测本身近几年也在不断地出现新的方法。由于近几年算法的落地中逐步出现越来越多的泛化性问题,异常检测也被逐渐被人们所关注。我个人理解,异常检测是一种不同于深度学习数据驱动方法的算法思想,可以巧妙地解决实际应用中传统数据驱动方法所难以解决的问题,因此的确有非常大的研究价值。
MSP - Maximum Softmax Probabilities
A Baseline For Detecting Misclassified And Out-Of-Distribution Examples In Neural Networks - ICLR 2017
MSP是异常检测工作中具有里程碑意义的一篇文章,其做法与思想非常简单,就是用网络的Softmax层输出的最大概率(MSP)作为判断样本是否是OOD或Anomaly的依据。如果网络对某样本的分类无法得到明确的结论,会生成各分类类别概率相近的结果,因此对OOD样本,网络偏向于生成较小的MSP,而对于ID(In-distribution)样本,网络偏向于生成较大的MSP。这样一来,便可以用过MSP判断某样本是OOD还是ID。
虽然算法思想很