尽管统计学本身是门科学,我们也在纯数学的角度上研究了很多概率的性质。但是也不能否认统计学中依然有相当多经验总结。而且相当多的经验是行之有效的。在《概率论与数理统计》这本教材中,也列举了一些经验性的东西,因此我们也需要来学习一下。
文章目录
切比雪夫不等式 (Chebyshev’s Inequality)
我们来看一看切比雪夫不等式,有两个:
P { ∣ X − E ( X ) ∣ ≤ ε } ≥ 1 − D ( X ) ε 2 P \{ |X - E(X)| \leq \varepsilon \} \geq 1 - \frac{D(X)}{\varepsilon ^ 2} P{∣X−E(X)∣≤ε}≥1−ε2D(X)
P { ∣ X − E ( X ) ∣ > ε } ≤ D ( X ) ε 2 P \{ |X - E(X)| > \varepsilon \} \leq \frac{D(X)}{\varepsilon ^ 2} P{∣X−E(X)∣>ε}≤ε2D(X)
那么,它们表达什么含义呢?
对于随机事件,如果它服从一定的分布,就会发现随机事件会以极大的概率落入一个或者两个标准差之内。换言之,对于概率事件,如果取一个范围
[
−
ε
,
+
ε
]
[- \varepsilon, + \varepsilon]
[−ε,+ε],那么落入这个范围以内的概率为
1
−
D
(
X
)
ε
2
1 - \frac{D(X)}{\varepsilon ^ 2}
1−ε2D(X),超过这个范围的概率是
D
(
X
)
ε
2
\frac{D(X)}{\varepsilon ^ 2}
ε2D(X)。
大数定理(Law of Large Numbers)
从切比雪夫不等式出发,我们发现之所以切比雪夫不等式成立,其中一个很重要的原因就是因为同分布独立的概率事件,其期望值总是固定且相等。同样的,我们发现当对随机事件大量实验后,会发现随机事件A随着实验次数增大时总会呈现出某种稳定性,即朝着某个常数(通常即期望)收敛,而这就是所谓的大数定理。
上图清楚的表明,随着样本的增加,噪音逐渐减少,其样本值逐渐收敛到期望值。所以,从经验和大量的实验结果统计表明:
X n ‾ = 1 n ( X 1 + ⋯ + X n ) \overline{X_n} = \frac{1}{n}(X_1 + \cdots + X_n) Xn=n1(X1+⋯+Xn)
当 n → ∞ n \rightarrow \infty n→∞ 时, X n ‾ → μ \overline{X_n} \rightarrow \mu Xn→μ。要满足这个结果的限制条件,就有如下几条:
- X i X_i Xi 彼此是独立、同分布的
- E ( X i ) ≈ μ E(X_i) \approx \mu E(Xi)≈μ
那么关于如何描述大数定理,目前数学界主要给出了三种
1. 弱大数定理(辛钦大数定理)
对于一列独立同分布的随机变量序列 X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X1,X2,⋯,Xn,如果这些随机变量的期望 μ = E ( X i ) \mu = E(X_i) μ=E(Xi) 存在,则样本均值 X ‾ n = 1 n ∑ i = 1 n X i \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i Xn=n1∑i=1nXi 依概率收敛于总体均值 μ \mu μ,即:
lim n → ∞ P ( ∣ X ‾ n − μ ∣ < ε ) = 1 对于任意的 ε > 0. \lim_{n \to \infty} P\left(|\overline{X}_n - \mu| < \varepsilon\right) = 1 \quad \text{对于任意的 } \varepsilon > 0. n→∞limP(∣Xn−μ∣<ε)=1对于任意的 ε>0.
这是弱收敛(依概率收敛)的概念。这里的“依概率收敛”是指对于任意给定的正数 ε \varepsilon ε,随着 n n n 趋于无穷,样本均值与总体均值的差小于 ε \varepsilon ε 的概率趋于 1。
2. 强大数定理
对于一列独立同分布的随机变量序列 X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X1,X2,⋯,Xn,如果这些随机变量的期望 μ = E ( X i ) \mu = E(X_i) μ=E(Xi) 存在,则样本均值 X ‾ n = 1 n ∑ i = 1 n X i \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i Xn=n1∑i=1nXi 几乎处处收敛于总体均值 μ \mu μ,即:
P ( lim n → ∞ X ‾ n = μ ) = 1. P\left(\lim_{n \to \infty} \overline{X}_n = \mu \right) = 1. P(n→∞limXn=μ)=1.
这里的“几乎处处收敛”指的是几乎必然地收敛,即样本均值收敛到总体均值的事件发生的概率为 1。这个收敛比弱大数定理中的依概率收敛更强。
3. 切比雪夫大数定理
对于一列两两独立的随机变量序列 X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X1,X2,⋯,Xn,如果这些随机变量的期望 E ( X i ) = μ E(X_i) = \mu E(Xi)=μ 存在,并且方差 D ( X i ) = Var ( X i ) ≤ σ 2 < ∞ D(X_i) = \text{Var}(X_i) \leq \sigma^2 < \infty D(Xi)=Var(Xi)≤σ2<∞ 有统一的上界,则样本均值 X ‾ n = 1 n ∑ i = 1 n X i \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i Xn=n1∑i=1nXi 依概率收敛于总体均值 μ \mu μ。即,对于任意 ε > 0 \varepsilon > 0 ε>0,有:
lim n → ∞ P ( ∣ X ‾ n − μ ∣ < ε ) = 1. \lim_{n \to \infty} P\left(|\overline{X}_n - \mu| < \varepsilon \right) = 1. n→∞limP(∣Xn−μ∣<ε)=1.
切比雪夫大数定理是弱大数定理的一种特殊情况,它不需要变量是完全独立的,但要求它们的方差有一个统一的上界。
总结
- 弱大数定理和切比雪夫大数定理都表述的是依概率收敛的情况。
- 强大数定理表述的是几乎处处收敛,收敛的强度更高。
中心极限定理
想象一下,我们把随机序列一巴掌拍扁,把事件绘制在图表上会有什么效果。没错,基本上随机事件会呈现比较明显的正态分布的特点。
所以,对于独立、同分布的随机序列
X 1 + X 2 + X 3 + ⋯ + X n = ∑ i = 1 n X i X_1 + X_2 + X_3 + \cdots + X_n = \sum_{i=1}^n X_i X1+X2+X3+⋯+Xn=i=1∑nXi
其标准化变量:
Y = ∑ X i − E ( ∑ X i ) D ( ∑ X i ) = ∑ X i − n μ n σ Y = \frac{\sum X_i - E(\sum X_i)}{\sqrt{D(\sum X_i)}} = \frac{\sum X_i - n\mu}{\sqrt{n} \sigma} Y=D(∑Xi)∑Xi−E(∑Xi)=nσ∑Xi−nμ
如果他们有相同的数学期望 E ( X i ) = μ E(X_i) = \mu E(Xi)=μ,方差有界,且 σ 2 > 0 \sigma^2 > 0 σ2>0。那么这样的数列近似服从正态分布:
∑ i = 1 n X i − n μ n σ ∼ N ( n μ , n σ 2 ) \frac{ \sum_{i=1}^n X_i - n\mu}{\sqrt{n} \sigma} \sim N(n \mu, n \sigma^2) nσ∑i=1nXi−nμ∼N(nμ,nσ2)
如果对上式子上下同时 1 n \frac{1}{n} n1,就可以令
1 n ∑ i = 1 n X i − μ σ / n ∼ N ( μ , σ 2 ) \frac{ \frac{1}{n}\sum_{i=1}^n X_i - \mu}{\sigma / \sqrt{n}} \sim N( \mu, \sigma^2) σ/nn1∑i=1nXi−μ∼N(μ,σ2)
即:
lim n → ∞ P { ∑ i = 1 n X i − n μ n σ ≤ x } ≈ Φ ( x ) ∼ N ( μ , σ 2 ) \lim_{n \rightarrow \infty} P\{ \frac{ \sum_{i=1}^n X_i - n\mu}{\sqrt{n} \sigma} \leq x \} \approx \Phi(x) \sim N( \mu, \sigma^2) n→∞limP{nσ∑i=1nXi−nμ≤x}≈Φ(x)∼N(μ,σ2)
使得上式近似的变成一个标准正态分布。即,当n充分大的时候,我们可以用标准正态分布给出其近似分布。
另外,针对中心极限定理,一般通常情况下会问一个范围内是多少概率的问题,所以通常会把这类问题转换为标准正态分布来求解 N~ ( μ = 0 (\mu = 0 (μ=0, σ = 1 ) \sigma = 1) σ=1),正态分布的数学符号通常表示为 Φ \Phi Φ。
所以有:
P { a < ∑ i = 1 n X i < b } ≈ Φ ( b − n μ n σ ) − Φ ( a − n μ n σ ) P\{ a <\sum_{i=1}^n X_i < b \} \approx \Phi(\frac{b - n\mu}{\sqrt{n} \sigma}) - \Phi(\frac{a - n\mu}{\sqrt{n} \sigma}) P{a<i=1∑nXi<b}≈Φ(nσb−nμ)−Φ(nσa−nμ)
这里要强调的是,计算结果只能近似,而不是相等。因为以前的人没有计算机,无法准确的得出实验结果。所以当结果呈现正态分布的时候,就会习惯性的把它跟标准正态分布进行比对,计算出的结果是个接近的值。但如果你用计算机严格的做实验进行模拟的话,还是会发现最终结果跟笔算的结果差异还是挺大的。
从另外一方面来说,对于概率问题,通常我们更关心事件是大概率事件还是小概率事件,而不是关心概率事件的实际概率是多少。所以这也从另外一个角度,解释了为什么在数学中很多情况下(不止概率计算中),其实只需要计算一个估值就可以了。
二项分布中心极限定理
这也算是一个比较常见的中心极限,相关的知识点你参考着我上面写的就行了,解题过程和中心极限定理是差不多的。
若 X ∼ B ( n , p ) X \sim B(n, p) X∼B(n,p) 近似于 N ( n p , n p ( 1 − p ) ) N(np, np(1-p)) N(np,np(1−p))
P { a < X < b } = Φ ( b − n p n p ( 1 − p ) ) − Φ ( a − n p n p ( 1 − p ) ) P\{ a < X < b \} = \Phi(\frac{b - np}{\sqrt{np (1- p)}}) - \Phi(\frac{a - np}{\sqrt{np (1- p)}}) P{a<X<b}=Φ(np(1−p)b−np)−Φ(np(1−p)a−np)
做点题吧!
生产线上组装每件成品的时间 X 服从指数分布,其数学期望为 1/5 ,假设各件产品的组 装 时 间 互 不 影 响 , 试 求 组 装 100 件 成 品 需 要 15 到 20 小 时 的 概 率 ,其中已知 Φ ( 2.5 ) = 0.9938 \Phi(2.5) = 0.9938 Φ(2.5)=0.9938 , Φ ( 1.25 ) = 0.8944 \Phi(1.25)=0.8944 Φ(1.25)=0.8944。
解:,因为是指数分布,且已知期望 μ = 1 / 5 \mu = 1/5 μ=1/5,则 σ = 1 / 5 \sigma = 1/5 σ=1/5,且 n = 100 n=100 n=100。然后带入公式:
P { 15 ≤ Y ≤ 20 } = Φ ( 20 − n μ n σ ) − Φ ( 15 − n μ n σ ) P\{ 15 \leq Y \leq 20 \} = \Phi(\frac{20 - n \mu}{\sqrt{n} \sigma}) - \Phi(\frac{15 - n \mu}{\sqrt{n} \sigma}) P{15≤Y≤20}=Φ(nσ20−nμ)−Φ(nσ15−nμ)
然后我们把上述值代入公式中
= Φ ( 20 − 100 ∗ 1 / 5 100 ∗ 1 / 5 ) − Φ ( 15 − 100 ∗ 1 / 5 100 ∗ 1 / 5 ) = Φ ( 0 ) − Φ ( − 2.5 ) =\Phi(\frac{20 - 100 * 1/5}{\sqrt{100} * 1/5}) - \Phi(\frac{15 - 100 * 1/5}{\sqrt{100} * 1/5}) = \Phi(0) - \Phi(-2.5) =Φ(100∗1/520−100∗1/5)−Φ(100∗1/515−100∗1/5)=Φ(0)−Φ(−2.5)
因为正态分布关于X = 0 对称分布,所以有:
= Φ ( 0 ) − [ 1 − Φ ( 2.5 ) ] = Φ ( 0 ) + Φ ( 2.5 ) = 0.5 + 0.9938 − 1 = 0.4938 =\Phi(0) - [1 - \Phi(2.5)] = \Phi(0) + \Phi(2.5) = 0.5 + 0.9938 -1 = 0.4938 =Φ(0)−[1−Φ(2.5)]=Φ(0)+Φ(2.5)=0.5+0.9938−1=0.4938
如果是用笔头计算正则分布的分布函数,通常是比较难求解的。一般来说题目会给出可能用到的 Φ ( Y ) \Phi(Y) Φ(Y)值,不过如果是平时自己在做作业、或者工程中,可以用到《正则分布表》查表计算,有需要的话你可以去下载。